A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
基本信息
- 批准号:9678574
- 负责人:
- 金额:$ 21.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiopsyBlindedCaringCessation of lifeChargeChronicChronic Kidney FailureClinicalComputational algorithmComputer AssistedComputer softwareComputersCost of IllnessData SetEnsureEvaluationFreezingFrozen SectionsFundingGoalsHealth Care CostsHealthcare SystemsHumanImageImage AnalysisImmunohistochemistryInterobserver VariabilityKidneyKidney DiseasesKidney TransplantationLifeMachine LearningMalignant neoplasm of prostateManualsMeasuresMedicareMicroscopeMicroscopicModelingOnline SystemsOrganOrgan DonorOutcomePathologicPathologistPathologyPatient CarePatient-Focused OutcomesPatientsPersonal SatisfactionPhaseProcessQuantitative EvaluationsReproducibilityResearch PersonnelSavingsScientistSecureSlideSmall Business Technology Transfer ResearchSpeedTestingTimeTissuesTranslatingTransplantationTransplanted tissueUniversitiesWashingtonWorkbaseclinical practicecloud basedcommercial applicationcomputerizeddeep learningdigitalglomerulosclerosisimprovedinnovationlearning networkmalignant breast neoplasmmeetingspower analysispredictive modelingpublic health relevancesoftware developmentstandard of caretechnological innovationtoolwhole slide imaging
项目摘要
PROJECT SUMMARY/ABSTRACT
More people die every year from kidney disease than breast or prostate cancer. Kidney
transplantation is life-saving but is limited by a shortage of organ donors and an unacceptably
high donor organ discard rate. The decision to use or discard a donor kidney relies heavily on
manual quantitation of key microscopic findings by pathologists. A major limitation of this
microscopic examination is human variability and inefficiency in interpreting the findings,
resulting in potentially healthy organs being deemed unsuitable for transplantation or potentially
damaged organs being transplanted inappropriately. Our team developed the first Deep
Learning model capable of automatically quantifying percent global glomerulosclerosis in whole
slide images of donor kidney frozen section wedge biopsies. This innovative approach has the
potential to transform donor kidney biopsy evaluation by improving pathologist efficiency,
accuracy, and precision ultimately resulting in optimized donor organ utilization, diminished
health care costs, and improved patient outcomes. The goal of this project is to establish our
Deep Learning automated quantitative evaluation as the standard practice of donor kidney
evaluation prior to transplantation. This will be achieved by assembling a team of expert kidney
pathologists and computer scientists specializing in machine learning. The proposal will
evaluate the accuracy and precision of the computerized approach to quantifying percent global
glomerulosclerosis and compare these results with current standard of care pathologist
evaluation. The feasibility of deploying the Deep Learning model to analyze whole slide images
on the cloud will also be examined. The end product of this STTR will be a web-based platform
to securely deploy Deep Learning image analysis as a tool to assist pathologists with donor
kidney biopsy evaluation.
项目摘要/摘要
每年因肾脏疾病而死的人数比乳腺癌或前列腺癌多。肾
移植是挽救生命的,但受到器官捐献者短缺的限制和不可接受的
高供体器官丢弃率。使用或丢弃捐赠者肾脏的决定非常依赖
病理学家对关键显微镜发现的手动定量。这是一个主要限制
显微镜检查是人类的可变性和效率低下,解释发现,
导致潜在健康的器官被认为不适合移植或可能
受损的器官被不合适地移植。我们的团队开发了第一个深
能够自动量化全局肾小球硬化百分比的学习模型
供体肾脏冷冻部分楔形活检的滑动图像。这种创新的方法具有
通过提高病理学家效率来改变供体肾脏活检评估的潜力,
准确性和精度最终导致了优化的供体器官利用率,减少了
医疗保健费用,改善了患者的结果。该项目的目的是建立我们的
深度学习自动定量评估作为捐赠肾脏的标准实践
在移植之前进行评估。这将通过组建一组专家肾脏来实现
病理学家和计算机科学家专门研究机器学习。提案将
评估计算机方法的准确性和精度,以量化全球百分比
肾小球硬化并将这些结果与当前的护理病理学家进行比较
评估。部署深度学习模型以分析整个幻灯片图像的可行性
在云上也将进行检查。该STTR的最终产品将是基于网络的平台
将深度学习图像分析牢固地部署为工具,以协助病理学家与捐助者
肾脏活检评估。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development and Validation of a Deep Learning Model to Quantify Glomerulosclerosis in Kidney Biopsy Specimens.
- DOI:10.1001/jamanetworkopen.2020.30939
- 发表时间:2021-01-04
- 期刊:
- 影响因子:13.8
- 作者:Marsh JN;Liu TC;Wilson PC;Swamidass SJ;Gaut JP
- 通讯作者:Gaut JP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph P Gaut其他文献
Joseph P Gaut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph P Gaut', 18)}}的其他基金
A Deep Learning Model to Quantify Arteriosclerosis in Donor Kidney Biopsies
量化供体肾活检中动脉硬化的深度学习模型
- 批准号:
10601825 - 财政年份:2022
- 资助金额:
$ 21.4万 - 项目类别:
A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
- 批准号:
10266188 - 财政年份:2018
- 资助金额:
$ 21.4万 - 项目类别:
相似国自然基金
肿瘤外泌体核酸甲基化标志物的鉴定及其在液体活检中的应用
- 批准号:22307101
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于微球透镜阵列的一体化检测芯片及其在肿瘤“液体活检”中应用的关键技术研究
- 批准号:62375121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
近红外二区比率荧光双探针对转移前哨淋巴结的时间分辨活检
- 批准号:82302254
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于血浆cfDNA片段组学特征的液体活检技术在常见消化道肿瘤筛查中的应用研究
- 批准号:82373664
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SERS光谱液体活检技术的鼻咽癌筛查研究
- 批准号:12374405
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
Commercialization Readiness Pilot (CRP) program support for: Direct-from-specimen identification of pathogens common in endocarditis
商业化准备试点 (CRP) 计划支持: 直接从样本鉴定心内膜炎常见病原体
- 批准号:
10758417 - 财政年份:2023
- 资助金额:
$ 21.4万 - 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 21.4万 - 项目类别:
Combining Machine Learning and Nanofluidic Technology for The Multiplexed Diagnosis of Pancreatic Adenocarcinoma
结合机器学习和纳流体技术进行胰腺癌的多重诊断
- 批准号:
10613226 - 财政年份:2023
- 资助金额:
$ 21.4万 - 项目类别:
Cutaneous Phosphorylated Alpha-Synuclein for Detection of Prodromal Synucleinopathies
用于检测前驱期突触核蛋白病的皮肤磷酸化 α-突触核蛋白
- 批准号:
10481117 - 财政年份:2022
- 资助金额:
$ 21.4万 - 项目类别:
Distinguishing Pancreatic Cancer from Benign Pancreatic Disease using Nanoparticle-based Biomarkers
使用基于纳米颗粒的生物标志物区分胰腺癌和良性胰腺疾病
- 批准号:
10542739 - 财政年份:2022
- 资助金额:
$ 21.4万 - 项目类别: