A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
基本信息
- 批准号:9678574
- 负责人:
- 金额:$ 21.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiopsyBlindedCaringCessation of lifeChargeChronicChronic Kidney FailureClinicalComputational algorithmComputer AssistedComputer softwareComputersCost of IllnessData SetEnsureEvaluationFreezingFrozen SectionsFundingGoalsHealth Care CostsHealthcare SystemsHumanImageImage AnalysisImmunohistochemistryInterobserver VariabilityKidneyKidney DiseasesKidney TransplantationLifeMachine LearningMalignant neoplasm of prostateManualsMeasuresMedicareMicroscopeMicroscopicModelingOnline SystemsOrganOrgan DonorOutcomePathologicPathologistPathologyPatient CarePatient-Focused OutcomesPatientsPersonal SatisfactionPhaseProcessQuantitative EvaluationsReproducibilityResearch PersonnelSavingsScientistSecureSlideSmall Business Technology Transfer ResearchSpeedTestingTimeTissuesTranslatingTransplantationTransplanted tissueUniversitiesWashingtonWorkbaseclinical practicecloud basedcommercial applicationcomputerizeddeep learningdigitalglomerulosclerosisimprovedinnovationlearning networkmalignant breast neoplasmmeetingspower analysispredictive modelingpublic health relevancesoftware developmentstandard of caretechnological innovationtoolwhole slide imaging
项目摘要
PROJECT SUMMARY/ABSTRACT
More people die every year from kidney disease than breast or prostate cancer. Kidney
transplantation is life-saving but is limited by a shortage of organ donors and an unacceptably
high donor organ discard rate. The decision to use or discard a donor kidney relies heavily on
manual quantitation of key microscopic findings by pathologists. A major limitation of this
microscopic examination is human variability and inefficiency in interpreting the findings,
resulting in potentially healthy organs being deemed unsuitable for transplantation or potentially
damaged organs being transplanted inappropriately. Our team developed the first Deep
Learning model capable of automatically quantifying percent global glomerulosclerosis in whole
slide images of donor kidney frozen section wedge biopsies. This innovative approach has the
potential to transform donor kidney biopsy evaluation by improving pathologist efficiency,
accuracy, and precision ultimately resulting in optimized donor organ utilization, diminished
health care costs, and improved patient outcomes. The goal of this project is to establish our
Deep Learning automated quantitative evaluation as the standard practice of donor kidney
evaluation prior to transplantation. This will be achieved by assembling a team of expert kidney
pathologists and computer scientists specializing in machine learning. The proposal will
evaluate the accuracy and precision of the computerized approach to quantifying percent global
glomerulosclerosis and compare these results with current standard of care pathologist
evaluation. The feasibility of deploying the Deep Learning model to analyze whole slide images
on the cloud will also be examined. The end product of this STTR will be a web-based platform
to securely deploy Deep Learning image analysis as a tool to assist pathologists with donor
kidney biopsy evaluation.
项目总结/摘要
每年死于肾脏疾病的人比死于乳腺癌或前列腺癌的人多。肾
移植是挽救生命的,但受到器官捐献者短缺和不可接受的
供体器官丢弃率高。决定使用或丢弃捐赠者的肾脏在很大程度上取决于
病理学家对关键显微镜检查结果进行手动定量。这一点的一个主要局限是,
显微镜检查是人类在解释发现时的可变性和低效率,
导致潜在健康的器官被认为不适合移植或潜在地
受损器官被不当移植我们的团队开发了第一个
一种可自动量化肾小球硬化整体百分比的学习模型
供肾冰冻切片楔形活检切片图像。这种创新的方法具有
通过提高病理学家的效率来改变供体肾活检评价的潜力,
准确性和精确性最终导致优化的供体器官利用,
医疗保健成本和改善患者的结果。这个项目的目标是建立我们的
深度学习自动化定量评估作为供体肾脏的标准实践
移植前评估。这将通过组建一个肾脏专家团队来实现
病理学家和专门从事机器学习的计算机科学家。该提案将
评估计算机化方法的准确性和精确性,以量化全球
肾小球硬化症,并将这些结果与当前的护理标准病理学家进行比较
评价部署深度学习模型来分析整个幻灯片图像的可行性
云计算也将受到考验。该STTR的最终产品将是一个基于网络的平台
安全地部署深度学习图像分析作为一种工具,以帮助病理学家进行供体
肾活检评价。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development and Validation of a Deep Learning Model to Quantify Glomerulosclerosis in Kidney Biopsy Specimens.
- DOI:10.1001/jamanetworkopen.2020.30939
- 发表时间:2021-01-04
- 期刊:
- 影响因子:13.8
- 作者:Marsh JN;Liu TC;Wilson PC;Swamidass SJ;Gaut JP
- 通讯作者:Gaut JP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph P Gaut其他文献
Joseph P Gaut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph P Gaut', 18)}}的其他基金
A Deep Learning Model to Quantify Arteriosclerosis in Donor Kidney Biopsies
量化供体肾活检中动脉硬化的深度学习模型
- 批准号:
10601825 - 财政年份:2022
- 资助金额:
$ 21.4万 - 项目类别:
A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
- 批准号:
10266188 - 财政年份:2018
- 资助金额:
$ 21.4万 - 项目类别:
相似海外基金
卵巣癌/子宮体癌における薬剤感受性メチル化診断キットの開発とLiquid Biopsyへの応用
卵巢癌/子宫内膜癌药物敏感甲基化诊断试剂盒的研制及其在液体活检中的应用
- 批准号:
24K02584 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
グリオーマのliquid biopsyによるメチル化網羅的解析とprecision medicineへの応用
胶质瘤液体活检甲基化综合分析及其在精准医疗中的应用
- 批准号:
24K12271 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Liquid biopsyを用いた炎症性腸疾患の早期診断法開発
液体活检炎症性肠病早期诊断方法的开发
- 批准号:
24K10595 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
精神的長期ストレス児童の口腔細菌叢と唾液成分の解析:唾液 liquid biopsyを目指して
长期精神应激儿童口腔菌群和唾液成分分析:唾液液体活检
- 批准号:
24K13206 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MONALISA: A SIOPEN pragmatic clinical trial to MOnitor NeuroblastomA relapse with LIquid biopsy Sensitive Analysis
MONALISA:一项 SIOPEN 实用临床试验,通过液体活检监测神经母细胞瘤复发 敏感性分析
- 批准号:
10103126 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
EU-Funded
A SIOPEN pragmatic clinical trial to MOnitor NeuroblastomA relapse with LIquid biopsy Sensitive Analysis (MONALISA)
SIOPEN 通过液体活检敏感性分析 (MONALISA) 监测神经母细胞瘤复发的实用临床试验
- 批准号:
10110442 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
EU-Funded
Mutated human oncogene recombinant nucleosomes as reference materials for liquid biopsy
突变人癌基因重组核小体作为液体活检参考材料
- 批准号:
10090714 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Collaborative R&D
肝細胞癌における術中門脈血を用いたliquid biopsyの検討
肝细胞癌术中门静脉血液体活检检查
- 批准号:
24K19404 - 财政年份:2024
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Genetic diagnosis of vascular malformations by liquid biopsy and its application to precision medicine
液体活检对血管畸形的基因诊断及其在精准医疗中的应用
- 批准号:
23K09072 - 财政年份:2023
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Breath biopsy technology targeting for volatile oxidized lipids
针对挥发性氧化脂质的呼吸活检技术
- 批准号:
23K06080 - 财政年份:2023
- 资助金额:
$ 21.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




