A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
基本信息
- 批准号:10266188
- 负责人:
- 金额:$ 77.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-21 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAmericasArtificial IntelligenceBiopsyCanadaCessation of lifeChronicCicatrixClinicalComputer softwareComputersContractsDataDatabasesDevelopmentEnsureEvaluationFast Healthcare Interoperability ResourcesFibrosisFrozen SectionsFundingGoalsGoldGraft SurvivalHealth Care CostsHumanInterobserver VariabilityKidneyKidney DiseasesKidney TransplantationKnowledgeLaboratoriesLettersLifeMachine LearningMalignant neoplasm of prostateManualsMeasurementMicroscopeMicroscopicMidwestern United StatesModelingMultivariate AnalysisOnline SystemsOrganOrgan DonorOrgan ProcurementsOutcomePathologistPathologyPatient-Focused OutcomesPatientsPerformancePersonal SatisfactionPhaseProcessReproducibility of ResultsResearch PersonnelSavingsScanningScientistSecureServicesSlideSmall Business Technology Transfer ResearchSpecialistSpeedSystemTechniquesTestingTissuesTransplantationTrichrome stainTrichrome stain methodTrustUnited Network for Organ SharingUniversitiesVariantWashingtonWorkanalytical toolbaseclinical biomarkerscloud basedcloud platformcommercial applicationcostdeep learningfunctional improvementglomerulosclerosisimage processingimaging biomarkerimprovedinnovationinterstitialkidney biopsylearning strategymalignant breast neoplasmpathology imagingphase 1 studypredictive modelingpublic health relevancerenal damageshared databasestandard of caretechnological innovationtoolwhole slide imaging
项目摘要
ABSTRACT
More people die every year from kidney disease than breast or prostate cancer. Kidney
transplantation is life-saving, yet the donor organ shortage and high organ discard rate
contributes to 13 deaths daily among patients awaiting transplant. The decision to use or
discard a donor kidney relies heavily on microscopic quantitation of chronic damage by
pathologists. The current standard of care relies on a manual process that is subject to
significant human variability and inefficiency, resulting in potentially healthy kidneys being
discarded and potentially damaged kidneys being transplanted inappropriately. Our team
developed the first Deep Learning model to quantify percent global glomerulosclerosis in donor
kidney frozen section biopsy whole slide images. We developed a cloud-based platform to apply
the Deep Learning model to analyze kidney biopsy whole slide images in under 6 minutes with
accuracy and precision equal to or greater than current standard of care pathologists. We have
also developed a Deep Learning model to quantify interstitial fibrosis on donor kidney biopsy
whole slide images. This innovative approach has the potential to transform donor kidney biopsy
evaluation by improving pathologist efficiency, accuracy, and precision ultimately resulting in
optimized donor organ utilization, improved patient outcomes, and diminished health care costs.
The goal of this project is to establish our Deep Learning automated techniques as the standard
for evaluating donor kidneys prior to transplantation. This will be achieved by assembling a team
of expert pathologists and computer scientists specializing in machine learning. The proposal
will evaluate the accuracy and precision of the interstitial fibrosis Deep Learning model, use the
automated quantitation of key microscopic findings to develop an outcome-based chronic
damage score that predicts graft outcome, and test the ability of the Deep Learning models to
withstand variations encountered using different scanners and processing in different
laboratories. The functionality of the Trusted Kidney software platform will be improved beyond
the current usable product into a commercially viable solution for multiple laboratories.
抽象的
每年死于肾病的人数多于乳腺癌或前列腺癌。肾
移植挽救生命,但供体器官短缺、器官废弃率高
每天有 13 名等待移植的患者死亡。决定使用或
丢弃供体肾脏在很大程度上依赖于慢性损伤的显微定量
病理学家。当前的护理标准依赖于手动过程,该过程受
显着的人类变异性和低效率,导致潜在的健康肾脏
被丢弃和可能受损的肾脏被不当移植。我们的团队
开发了第一个深度学习模型来量化捐赠者的整体肾小球硬化百分比
肾脏冰冻切片活检全幻灯片图像。我们开发了一个基于云的平台来应用
深度学习模型可在 6 分钟内分析肾活检整个幻灯片图像
准确性和精密度等于或高于病理学家当前的护理标准。我们有
还开发了深度学习模型来量化供体肾活检的间质纤维化
整个幻灯片图像。这种创新方法有可能改变供体肾活检
通过提高病理学家的效率、准确性和精密度进行评估,最终导致
优化供体器官的利用,改善患者的治疗效果,并降低医疗保健成本。
该项目的目标是将我们的深度学习自动化技术建立为标准
用于在移植前评估供体肾脏。这将通过组建一个团队来实现
由专门从事机器学习的病理学家和计算机科学家组成。提案
将评估间质纤维化深度学习模型的准确性和精确度,使用
对关键的微观发现进行自动定量,以开发基于结果的慢性病
预测移植结果的损伤评分,并测试深度学习模型的能力
承受使用不同扫描仪和不同处理方式时遇到的变化
实验室。 Trusted Kidney软件平台的功能将得到改进
将当前可用的产品转变为多个实验室商业上可行的解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph P Gaut其他文献
Joseph P Gaut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph P Gaut', 18)}}的其他基金
A Deep Learning Model to Quantify Arteriosclerosis in Donor Kidney Biopsies
量化供体肾活检中动脉硬化的深度学习模型
- 批准号:
10601825 - 财政年份:2022
- 资助金额:
$ 77.51万 - 项目类别:
A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
- 批准号:
9678574 - 财政年份:2018
- 资助金额:
$ 77.51万 - 项目类别:
相似海外基金
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331278 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331277 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303524 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303526 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
Collaborative Research: Superinvaders: testing a general hypothesis of forest invasions by woody species across the Americas
合作研究:超级入侵者:测试美洲木本物种入侵森林的一般假设
- 批准号:
2331276 - 财政年份:2024
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
The Palestinian Americas: revolutionary struggle across the global south, 1950-1979
巴勒斯坦美洲:1950-1979 年全球南方的革命斗争
- 批准号:
AH/Y001214/1 - 财政年份:2023
- 资助金额:
$ 77.51万 - 项目类别:
Fellowship
Immuno-epidemiological Approach in Tackling Emerging & Re-emerging Infections in the Tropical Americas
应对新兴疾病的免疫流行病学方法
- 批准号:
22KK0279 - 财政年份:2023
- 资助金额:
$ 77.51万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
DISES: Coevolutionary dynamics of humans and maize in the Americas
疾病:美洲人类和玉米的共同进化动态
- 批准号:
2307175 - 财政年份:2023
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant
Conference: Reimagining Rights in the Americas
会议:重新构想美洲的权利
- 批准号:
2230329 - 财政年份:2022
- 资助金额:
$ 77.51万 - 项目类别:
Standard Grant














{{item.name}}会员




