A Deep Learning Model to Quantify Arteriosclerosis in Donor Kidney Biopsies
量化供体肾活检中动脉硬化的深度学习模型
基本信息
- 批准号:10601825
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-16 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ArteriesArteriosclerosisArtificial IntelligenceBiopsyBlood VesselsCessation of lifeChronicChronic Kidney FailureClinicalComputer softwareComputersCost of IllnessData SetEnsureEvaluationFeesFibrosisFreezingFrozen SectionsFundingGoalsHealth Care CostsHealthcare SystemsHistologicHistologyHumanImageImage AnalysisKidneyKidney DiseasesKidney TransplantationKnowledgeLaboratoriesLegalLifeMachine LearningMalignant neoplasm of prostateManualsMeasuresMedicareMicroscopeMicroscopicModelingNamesOrganOrgan DonorOutcomeOutputPathologicPathologistPathologyPatient CarePatient-Focused OutcomesPatientsPerformancePersonal SatisfactionPersonsPhaseProcessQuantitative EvaluationsReproducibilityResearch PersonnelSavingsScientistSecureSlideSmall Business Technology Transfer ResearchTechniquesTissuesTransplantationTrustUniversitiesVascular DiseasesWashingtonbasecloud basedcommercial applicationcomputerizeddeep learningdeep learning modeldigitalglomerulosclerosisimage processingimprovedinnovationinterstitialkidney biopsymalignant breast neoplasmmeetingspower analysispublic health relevancerenal damagesoftware developmentstandard of caretechnological innovationtoolusabilitywhole slide imaging
项目摘要
ABSTRACT
More people die every year from kidney disease than breast or prostate cancer. Kidney
transplantation is life-saving, yet the donor organ shortage and high organ discard rate
contributes to 13 deaths daily among patients awaiting transplant. The decision to use or
discard a donor kidney relies heavily on microscopic quantitation of chronic damage by
pathologists. The current standard of care relies on a manual process that is subject to
significant human variability and inefficiency, resulting in potentially healthy kidneys being
discarded and potentially damaged kidneys being transplanted inappropriately. Our team
developed the first Deep Learning model to quantify percent global glomerulosclerosis in donor
kidney frozen section biopsy whole slide images. We developed a cloud-based platform to apply
the Deep Learning model to analyze kidney biopsy whole slide images in under 6 minutes with
accuracy and precision equal to or greater than current standard of care pathologists. We have
also developed a Deep Learning model to quantify interstitial fibrosis on donor kidney biopsy
whole slide images. This innovative approach has the potential to transform donor kidney biopsy
evaluation by improving pathologist efficiency, accuracy, and precision ultimately resulting in
optimized donor organ utilization, improved patient outcomes, and diminished health care costs.
The goal of this project is to develop a Deep Learning technique for quantification of
arteriosclerosis, to support evaluation of donor kidneys prior to transplantation. This will be
achieved by assembling a team of expert pathologists and computer scientists specializing in
machine learning. The proposal will evaluate the accuracy and precision of the arteriosclerosis
Deep Learning model. The functionality of the Trusted Kidney software platform will be
improved beyond the current usable product into a commercially viable solution for multiple
laboratories.
抽象的
每年因肾脏疾病而死的人数比乳腺癌或前列腺癌多。肾
移植是挽救生命的,但是捐赠器官短缺和高器官丢弃率
在等待移植的患者中,每天13例死亡。决定使用或
丢弃供体肾脏在很大程度上依赖于对慢性损害的微观定量
病理学家。当前的护理标准依赖于手动过程
人类的显着可变性和效率低下,导致潜在健康的肾脏是
被丢弃并可能受损的肾脏被不适当地移植。我们的团队
开发了第一个深度学习模型,以量化供体中全球肾小球硬化百分比
肾脏冷冻截面活检全滑动图像。我们开发了一个基于云的平台来应用
深度学习模型,用于分析肾脏活检的整个滑梯图像在不到6分钟的时间内
准确性和精度等于或大于当前护理病理学家的标准。我们有
还开发了一个深度学习模型,以量化供体肾脏活检的间质纤维化
整个幻灯片图像。这种创新的方法有可能改变供体肾脏活检
通过提高病理学家效率,准确性和精度来评估,最终导致
优化的供体器官利用率,改善患者预后以及降低医疗保健费用。
该项目的目的是开发一种深度学习技术来量化
动脉硬化,以支持移植前对供体肾脏的评估。这将是
通过组建专家病理学家和计算机科学家团队来实现
机器学习。该提案将评估动脉硬化的准确性和精度
深度学习模型。受信任的肾脏软件平台的功能将是
超越当前可用产品的改进成多重的商业可行解决方案
实验室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph P Gaut其他文献
Joseph P Gaut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph P Gaut', 18)}}的其他基金
A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
- 批准号:
9678574 - 财政年份:2018
- 资助金额:
$ 28万 - 项目类别:
A Deep Learning Model to Improve Pathologist Interpretation of Donor Kidney Biopsies
改善病理学家对供体肾活检的解释的深度学习模型
- 批准号:
10266188 - 财政年份:2018
- 资助金额:
$ 28万 - 项目类别:
相似国自然基金
多种动脉硬化标志物顺序响应型探针的构建及精准成像应用研究
- 批准号:22368035
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
HSP27及其磷酸化在血管衰老和动脉粥样硬化中的作用机制研究
- 批准号:82371593
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
平滑肌细胞内源性CSE/H2S通过Ugt1a6调节线粒体功能参与动脉硬化的分子机制
- 批准号:82370448
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
去泛素化酶复合体BRISC介导的血管重构在代谢综合征相关动脉硬化中的作用机制研究
- 批准号:82300474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动脉粥样硬化斑块中脂质相变的力学机理及其对血管细胞的力学生物学影响
- 批准号:32371375
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Pericoronary fat: MACE risk from non-contrast CT and the role of iodine perfusion in contrast CT
冠状动脉周围脂肪:非造影 CT 的 MACE 风险以及造影 CT 中碘灌注的作用
- 批准号:
10577558 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10698174 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10353281 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
A dual-layer flat panel x-ray detector based on an engineered amorphous chalcogenide alloy for quantifying coronary artery calcium
基于工程非晶硫属化物合金的双层平板 X 射线探测器,用于量化冠状动脉钙
- 批准号:
10504769 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Patient-specific Outcome Prediction from Cardiovascular Multimodality Imaging by Artificial Intelligence
人工智能心血管多模态成像的患者特异性结果预测
- 批准号:
10601119 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别: