Reactome: An Open Knowledgebase of Human Pathways

Reactome:人类通路的开放知识库

基本信息

项目摘要

Project Summary We seek renewal of the core operating funding for the Reactome Knowledgebase of Human Biological Pathways and Processes. Reactome is a curated, open access biomolecular pathway database that can be freely used and redistributed by all members of the biological research community. It is used by clinicians, geneti- cists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways. Our curators, PhD-level scientists with backgrounds in cell and molecular biology work closely with in- dependent investigators within the community to assemble machine-readable descriptions of human biological pathways. Each pathway is extensively checked and peer-reviewed prior to publication to ensure its assertions are backed up by the primary literature, and that human molecular events inferred from orthologous ones in animal models have an auditable inference chain. Curated Reactome pathways currently cover 8930 protein- coding genes (44% of the translated portion of the genome) and ~150 RNA genes. We also offer a network of reliable ‘functional interactions’ (FIs) predicted by a conservative machine-learning approach, which covers an additional 3300 genes, for a combined coverage of roughly 60% of the known genome. Over the next five years, we will: (1) curate new macromolecular entities, clinically significant protein sequence variants and isoforms, and drug-like molecules, and the complexes these entities form, into new reac- tions; (2) supplement normal pathways with alternative pathways targeted to significant diseases and devel- opmental biology; (3) expand and automate our tools for curation, management and community annotation; (4) integrate pathway modeling technologies using probabilistic graphical models and Boolean networks for pathway and network perturbation studies; (5) develop additional compelling software interfaces directed at both computational and lab biologist users; and (6) and improve outreach to bioinformaticians, molecular bi- ologists and clinical researchers.
项目摘要 我们寻求更新人类生物学Reactome知识库的核心运营资金, 路径和过程。Reactome是一个精心策划的,开放获取的生物分子途径数据库,可以免费 被生物研究界的所有成员使用和重新分发。它被临床医生、遗传学家、 cists,基因组学研究人员和分子生物学家解释高通量实验的结果, 研究,由生物信息学家寻求开发新的算法,从基因组研究中挖掘知识, 以及系统生物学家建立正常和疾病变异途径的预测模型。 我们的策展人,具有细胞和分子生物学背景的博士级科学家与in密切合作, 社区内的独立调查人员收集机器可读的人类生物学描述, 途径。每一条路径在出版前都经过广泛的检查和同行评审,以确保其主张 是支持的主要文献,和人类分子事件推断从orthopolysones在 动物模型具有可审计的推理链。Curated Reactome途径目前涵盖8930种蛋白质- 编码基因(占基因组翻译部分的44%)和约150个RNA基因。我们还提供网络 通过保守的机器学习方法预测可靠的“功能交互”(FI),该方法涵盖了 额外的3300个基因,大约占已知基因组的60%。 在接下来的五年里,我们将:(1)策划新的大分子实体,临床上重要的蛋白质 序列变体和同种型,药物样分子,以及这些实体形成的复合物,进入新的反应, (2)用针对重大疾病的替代途径补充正常途径, opmental生物学;(3)扩展和自动化我们的工具,用于策展,管理和社区注释; (4)使用概率图形模型和布尔网络集成途径建模技术, 途径和网络扰动研究;(5)开发额外的引人注目的软件界面, 计算和实验室生物学家用户;和(6)和改善外展生物信息学家,分子双- 医生和临床研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER G DEUSTACHIO其他文献

PETER G DEUSTACHIO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER G DEUSTACHIO', 18)}}的其他基金

Optimizing Reactome TRUST
优化反应组信任
  • 批准号:
    10796500
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome: An Open Knowledgebase of Human Pathways.
Reactome:人类通路的开放知识库。
  • 批准号:
    10341517
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
Introducing CI/CD Technologies to Optimize Software Development in Reactome
引入 CI/CD 技术优化 Reactome 软件开发
  • 批准号:
    10839036
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome: An Open Knowledgebase of Human Pathways.
Reactome:人类通路的开放知识库。
  • 批准号:
    10685940
  • 财政年份:
    2022
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
  • 批准号:
    10657749
  • 财政年份:
    2021
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
  • 批准号:
    10270593
  • 财政年份:
    2021
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
  • 批准号:
    10494099
  • 财政年份:
    2021
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome IDG portal: Pathway-based analysis and visualization of understudied human proteins
Reactome IDG 门户:对正在研究的人类蛋白质进行基于通路的分析和可视化
  • 批准号:
    9904593
  • 财政年份:
    2019
  • 资助金额:
    $ 135.46万
  • 项目类别:
Reactome IDG portal: Pathway-based analysis and visualization of understudied human proteins
Reactome IDG 门户:对正在研究的人类蛋白质进行基于通路的分析和可视化
  • 批准号:
    10348828
  • 财政年份:
    2019
  • 资助金额:
    $ 135.46万
  • 项目类别:
Rapid and Precise Molecular Pathway Modelling of the SARS-CoV-1 and SARS-CoV-2 Infection Cycle with Human Host Protein and Therapeutic Interactions
SARS-CoV-1 和 SARS-CoV-2 与人类宿主蛋白的感染周期和治疗相互作用的快速、精确的分子途径建模
  • 批准号:
    10165320
  • 财政年份:
    2007
  • 资助金额:
    $ 135.46万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 135.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了