Introducing CI/CD Technologies to Optimize Software Development in Reactome

引入 CI/CD 技术优化 Reactome 软件开发

基本信息

项目摘要

Project Summary/Abstract We seek supplemental support to the core operating funding for the Reactome Knowledgebase of human biological pathways and processes. Reactome is a curated knowledgebase available online as an open access resource that can be freely used and redistributed by all members of the biological and biomedical research communities. It is used by clinicians, genomics researchers, and molecular biologists to interpret the results of high- throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways. Our curators, Ph.D.-level scientists, work closely with independent investigators within the community to assemble machine-readable descriptions of human biological pathways. Pathways are checked and peer-reviewed prior to publication to ensure its factual accuracy and compliance with the data model. A system of evidence tracking ensures that the primary literature supports all assertions. Reactome uses community-standard controlled vocabularies and ontologies to increase interoperability across resources. Pathways are reviewed and updated regularly. Reactome pathways are available on our website for browsing, downloading, and are accessible to in-house and third-party analysis tools. The project is highly cited in the literature, has been used repeatedly to make significant biological and clinical discoveries, and is incorporated into many high-impact informatics tools and resources. Over the past two decades, Reactome has developed a sophisticated software ecosystem. This ecosystem comprises various components for curation, quality assurance/quality control, data analysis and visualization, release, and export. Our primary focus in the parent Reactome grant is to upgrade the old GWT-based web application to a modern Angular-based app, port the standalone Java-based curator tool to the web, and migrate our internal curator database from MySQL to Neo4j. With the backing of this supplemental grant, we aim to introduce modern Continuous Integration/Continuous Deployment (CI/CD) technologies into our software development process. This will allow us to update existing components more efficiently and integrate new ones seamlessly. We also plan to adopt LinkML, a modern tool for editing knowledge graph schemas, to manage our data model. We will replace the outdated multi-step data model update protocol, which relies on Perl and Protege and requires tedious manual editing across multiple components. With the help of this supplemental grant, we will make our software development more streamlined and efficient.
项目总结/文摘

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plant Reactome Knowledgebase: empowering plant pathway exploration and OMICS data analysis.
  • DOI:
    10.1093/nar/gkad1052
  • 发表时间:
    2024-01-05
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER G DEUSTACHIO其他文献

PETER G DEUSTACHIO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER G DEUSTACHIO', 18)}}的其他基金

Optimizing Reactome TRUST
优化反应组信任
  • 批准号:
    10796500
  • 财政年份:
    2022
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome: An Open Knowledgebase of Human Pathways.
Reactome:人类通路的开放知识库。
  • 批准号:
    10341517
  • 财政年份:
    2022
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome: An Open Knowledgebase of Human Pathways.
Reactome:人类通路的开放知识库。
  • 批准号:
    10685940
  • 财政年份:
    2022
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
  • 批准号:
    10657749
  • 财政年份:
    2021
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
  • 批准号:
    10270593
  • 财政年份:
    2021
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
  • 批准号:
    10494099
  • 财政年份:
    2021
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome IDG portal: Pathway-based analysis and visualization of understudied human proteins
Reactome IDG 门户:对正在研究的人类蛋白质进行基于通路的分析和可视化
  • 批准号:
    9904593
  • 财政年份:
    2019
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome IDG portal: Pathway-based analysis and visualization of understudied human proteins
Reactome IDG 门户:对正在研究的人类蛋白质进行基于通路的分析和可视化
  • 批准号:
    10348828
  • 财政年份:
    2019
  • 资助金额:
    $ 9.37万
  • 项目类别:
Rapid and Precise Molecular Pathway Modelling of the SARS-CoV-1 and SARS-CoV-2 Infection Cycle with Human Host Protein and Therapeutic Interactions
SARS-CoV-1 和 SARS-CoV-2 与人类宿主蛋白的感染周期和治疗相互作用的快速、精确的分子途径建模
  • 批准号:
    10165320
  • 财政年份:
    2007
  • 资助金额:
    $ 9.37万
  • 项目类别:
Reactome: An Open Knowledgebase of Human Pathways
Reactome:人类通路的开放知识库
  • 批准号:
    9451318
  • 财政年份:
    2007
  • 资助金额:
    $ 9.37万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 9.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了