Optimizing Reactome TRUST
优化反应组信任
基本信息
- 批准号:10796500
- 负责人:
- 金额:$ 17.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsAuthorshipBasic ScienceBiologicalBiomedical ResearchCertificationClinicalCommunitiesControlled VocabularyDataData CollectionDatabasesDevelopmentDiseaseDoctor of PhilosophyEnsureFAIR principlesFundingFutureGenomicsHumanIntelligenceKnowledgeLiteratureMeasuresMiningModelingMolecularMonitorOntologyPathway interactionsPeer ReviewPositioning AttributeProcessPublicationsReadabilityResearchResearch PersonnelResourcesScheduleScientistStudentsSurveysSystemTRUST principlesTranslational ResearchUpdateVariantWorkbiological researchdata modelingdata repositorydata visualizationexperimental studyimprovedinformatics toolinteroperabilityknowledgebasemembernovelopen datapredictive modelingquality assuranceresearch studytooltrustworthinessweb site
项目摘要
Project Summary/Abstract
We seek supplemental support to the core operating funding for the Reactome
Knowledgebase of human biological pathways and processes. Reactome is a curated
knowledgebase available online as an open access resource that can be freely used and
redistributed by all members of the biological and biomedical research communities. It is used
by clinicians, genomics researchers, and molecular biologists to interpret the results of high-
throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for
mining knowledge from genomic studies, and by systems biologists building predictive models
of normal and disease variant pathways. Our curators, Ph.D.-level scientists, work closely with
independent investigators within the community to assemble machine-readable descriptions of
human biological pathways. Each pathway is checked and peer-reviewed prior to publication to
ensure its factual accuracy and compliance with the data model. A system of evidence tracking
ensures that the primary literature supports all assertions. Reactome uses community-standard
controlled vocabularies and ontologies to increase interoperability across resources. Pathways
are reviewed and updated regularly. Reactome pathways are available on our website for
browsing, downloading, and are accessible to in-house and third-party analysis tools. The
project is highly cited in the literature, has been used repeatedly to make significant biological
and clinical discoveries, and is incorporated into many high-impact informatics tools and
resources.
Over the next twelve months, to strengthen our adoption of the TRUST principles, we will
improve relevant features of our curation and quality assurance and develop an intelligent user
profiling system to better understand our user community and tool and data integrators. We will
build tools to monitor data usage to inform our update schedule and to improve user access to
legacy data. In parallel, we will [automate data collection, making our measures more detailed,
reliable, and consistent. To further demonstrate to the research community that Reactome is a
trustworthy data repository, and to drive our own development of further metrics we will apply
for CoreTrustSeal certification.
项目概要/摘要
我们寻求对 Reactome 核心运营资金的补充支持
人类生物途径和过程的知识库。 Reactome 是一个精心策划的
知识库作为开放获取资源在线提供,可以免费使用和
由生物和生物医学研究界的所有成员重新分发。它被用来
由临床医生、基因组学研究人员和分子生物学家解释高
生物信息学家寻求开发新算法的吞吐量实验研究
从基因组研究中挖掘知识,并由系统生物学家构建预测模型
正常和疾病变异途径。我们的策展人、博士级科学家与我们密切合作
社区内的独立调查员收集机器可读的描述
人类的生物学途径。每个途径在发布之前都会经过检查和同行评审
确保其事实准确性并符合数据模型。证据追踪系统
确保主要文献支持所有主张。 Reactome 使用社区标准
受控词汇和本体以提高跨资源的互操作性。途径
定期审查和更新。反应组途径可在我们的网站上找到
浏览、下载,并可使用内部和第三方分析工具。这
该项目在文献中被高度引用,已被反复使用以产生重大的生物
和临床发现,并被纳入许多高影响力的信息学工具和
资源。
在接下来的十二个月中,为了加强我们对信任原则的采用,我们将
改进我们的策划和质量保证的相关功能并培养聪明的用户
分析系统,以更好地了解我们的用户社区以及工具和数据集成商。我们将
构建工具来监控数据使用情况,以通知我们的更新计划并改善用户访问
遗留数据。与此同时,我们将[自动化数据收集,使我们的措施更加详细,
可靠且一致。为了进一步向研究界证明 Reactome 是
值得信赖的数据存储库,并推动我们自己开发更多指标,我们将应用
用于 CoreTrustSeal 认证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER G DEUSTACHIO其他文献
PETER G DEUSTACHIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER G DEUSTACHIO', 18)}}的其他基金
Reactome: An Open Knowledgebase of Human Pathways.
Reactome:人类通路的开放知识库。
- 批准号:
10341517 - 财政年份:2022
- 资助金额:
$ 17.45万 - 项目类别:
Introducing CI/CD Technologies to Optimize Software Development in Reactome
引入 CI/CD 技术优化 Reactome 软件开发
- 批准号:
10839036 - 财政年份:2022
- 资助金额:
$ 17.45万 - 项目类别:
Reactome: An Open Knowledgebase of Human Pathways.
Reactome:人类通路的开放知识库。
- 批准号:
10685940 - 财政年份:2022
- 资助金额:
$ 17.45万 - 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
- 批准号:
10657749 - 财政年份:2021
- 资助金额:
$ 17.45万 - 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
- 批准号:
10270593 - 财政年份:2021
- 资助金额:
$ 17.45万 - 项目类别:
Reactome and the Gene Ontology: Digital pathway convergence for core data resources
Reactome 和基因本体:核心数据资源的数字路径融合
- 批准号:
10494099 - 财政年份:2021
- 资助金额:
$ 17.45万 - 项目类别:
Reactome IDG portal: Pathway-based analysis and visualization of understudied human proteins
Reactome IDG 门户:对正在研究的人类蛋白质进行基于通路的分析和可视化
- 批准号:
9904593 - 财政年份:2019
- 资助金额:
$ 17.45万 - 项目类别:
Reactome IDG portal: Pathway-based analysis and visualization of understudied human proteins
Reactome IDG 门户:对正在研究的人类蛋白质进行基于通路的分析和可视化
- 批准号:
10348828 - 财政年份:2019
- 资助金额:
$ 17.45万 - 项目类别:
Rapid and Precise Molecular Pathway Modelling of the SARS-CoV-1 and SARS-CoV-2 Infection Cycle with Human Host Protein and Therapeutic Interactions
SARS-CoV-1 和 SARS-CoV-2 与人类宿主蛋白的感染周期和治疗相互作用的快速、精确的分子途径建模
- 批准号:
10165320 - 财政年份:2007
- 资助金额:
$ 17.45万 - 项目类别:
Reactome: An Open Knowledgebase of Human Pathways
Reactome:人类通路的开放知识库
- 批准号:
9451318 - 财政年份:2007
- 资助金额:
$ 17.45万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 17.45万 - 项目类别:
Continuing Grant














{{item.name}}会员




