Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
基本信息
- 批准号:9769690
- 负责人:
- 金额:$ 54.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAddressAdultAffectAlcohol or Other Drugs useAlcoholsAmericanAnimal ModelBayesian ModelingBehaviorBig DataBinge EatingBrainBrain imagingBrain regionCannabisChildCognitionCommon CoreComputer AnalysisComputer SimulationComputing MethodologiesCorpus striatum structureCouplingCuesDataData SetDopamineDrug AddictionDrug abuseDrug usageFailureFoodFunctional Magnetic Resonance ImagingGoalsHumanImage AnalysisImaging DeviceIncubatedIndividualInsula of ReilLearningMethodsMidbrain structureModalityModelingNatureNeurobiologyNicotineObesityPathologyPerceptionPharmaceutical PreparationsPhenotypePsychiatryPublic HealthResearchResistanceRewardsRoleSample SizeSeveritiesSubgroupSubstance Use DisorderSubstantia nigra structureSymptomsTimeUnited StatesUnited States National Institutes of HealthUpdateVentral Tegmental AreaWorkaddictionbasebench to bedsidebinge drinkercausal modelcravingcue reactivitydrug cravingfood cravinghuman modelimaging studyinterestmarijuana usemarijuana usermultilevel analysisneural circuitneural modelneuroimagingnovelrelapse predictionrelating to nervous systemresponsereward processingtobacco smokers
项目摘要
Abstract
Substance use disorders (SUD) and obesity are both major public health concerns in the United States, with
an estimated 20.8 million Americans struggling with at least one SUD in 2015 and 78.6 million adults and 12.7
million children who are obese. Cue-elicited craving is a central symptom of both drug addiction and binge
eating and a strong predictor of relapse. Compared to other SUD symptoms, craving is also much more
resistant to treatment. Unfortunately, our understanding of the neurobiological basis of cue-induced craving is
still limited, especially compared to the wealth of existing human neuroimaging data. This is partially due to the
lack of big data collectives (i.e. fMRI studies have mostly been conducted in isolation from each other) as well
as the scarcity of model-based computational analysis in neuroimaging studies on addiction and obesity. The
overarching goal of this project is to use multi-level, model-based computational methods to re-analyze six
existing fMRI datasets that examine cue reactivity and craving across a total of 954 individuals with substance
use or binge eating (59 tobacco smokers, 254 cannabis users, 598 binge drinkers, and 43 binge eating adults).
We will address three timely aims using novel computational modeling methods: 1) conduct Bayesian model-
based analyses to examine the common and distinct computational mechanisms of drug and food craving
across different groups; 2) use dynamic causal modeling to quantify directed coupling between neural regions
involved in cue reactivity shared by or unique to different substance using and binge eating groups; 3) explore
how models of cue-elicited craving are modulated by the severity of substance use and binge eating. Findings
from this project will greatly enhance our understanding of the neural and computational mechanisms
underlying craving and cue reactivity in drug addiction and binge eating. The implication of these results could
be far-reaching, because 1) craving is a common and core phenotype across different substance use and
binge eating groups; 2) these advanced modeling methods could be applied to many other pathologies related
to dysfunctional craving and reward processing; and 3) how these mechanisms differ between more severe
(e.g. SUD) and less severe (e.g. non-SUD) individuals could provide mechanisms that might protect an
individual from developing SUD.
抽象的
药物使用障碍(SUD)和肥胖症都是美国的主要公共卫生问题
估计有2080万美国人在2015年至少有一名SUD和7860万成年人和12.7
肥胖的百万儿童。提示引用的渴望是吸毒和暴饮暴食的核心症状
饮食和强大的复发预测指标。与其他SUD症状相比,渴望也更多
抗治疗。不幸的是,我们对提示引起的渴望神经生物学基础的理解是
仍然有限,特别是与现有的人类神经影像数据的财富相比。这部分是由于
还缺乏大数据集体(即fMRI研究大多是彼此孤立进行的)
作为对成瘾和肥胖的神经影像学研究中基于模型的计算分析的稀缺。这
该项目的总体目标是使用基于模型的计算方法重新分析六个
现有的fMRI数据集检查了1154个具有物质的人的提示反应性和渴望
使用或暴饮暴食(59名吸烟者,254位大麻使用者,598个暴饮暴食者和43个暴饮暴食者)。
我们将使用新颖的计算建模方法解决三个及时的目标:1)进行贝叶斯模型 -
基于分析,以检查药物和食物的常见和不同的计算机制
跨不同的群体; 2)使用动态因果建模来量化神经区域之间的定向耦合
参与使用和暴饮暴食组的不同物质共享或独特的提示反应性; 3)探索
提示渴望的模型如何通过使用和暴饮暴食的严重性来调节。发现
来自该项目将大大增强我们对神经和计算机制的理解
在药物成瘾和暴饮暴食中的潜在渴望和提示反应性。这些结果的含义可能
要深远,因为1)渴望是不同物质使用和
暴饮暴食组; 2)这些高级建模方法可以应用于许多其他与病理相关的病理
使功能失调的渴望和奖励处理; 3)这些机制在更严重的情况下如何有所不同
(例如SUD)和不太严重(例如非SUD)个体可以提供可能保护一个机制
来自发展SUD的个人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaosi Gu其他文献
Xiaosi Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaosi Gu', 18)}}的其他基金
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10579939 - 财政年份:2021
- 资助金额:
$ 54.96万 - 项目类别:
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10400100 - 财政年份:2021
- 资助金额:
$ 54.96万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10059060 - 财政年份:2020
- 资助金额:
$ 54.96万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10428547 - 财政年份:2020
- 资助金额:
$ 54.96万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10640947 - 财政年份:2020
- 资助金额:
$ 54.96万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10227238 - 财政年份:2020
- 资助金额:
$ 54.96万 - 项目类别:
Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
- 批准号:
9980853 - 财政年份:2019
- 资助金额:
$ 54.96万 - 项目类别:
Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
- 批准号:
9809076 - 财政年份:2019
- 资助金额:
$ 54.96万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10197070 - 财政年份:2018
- 资助金额:
$ 54.96万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10434013 - 财政年份:2018
- 资助金额:
$ 54.96万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Longitudinal Modeling of Pro-Inflammatory Cytokines, Hazardous Alcohol Use, and Cerebral Metabolites as Predictors of Neurocognitive Change in People with HIV
促炎细胞因子、有害酒精使用和脑代谢物的纵向建模作为 HIV 感染者神经认知变化的预测因子
- 批准号:
10838849 - 财政年份:2024
- 资助金额:
$ 54.96万 - 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 54.96万 - 项目类别:
The impact of early life opioid exposure on the molecular and functional trajectories of septal cell types
生命早期阿片类药物暴露对隔膜细胞类型分子和功能轨迹的影响
- 批准号:
10775154 - 财政年份:2023
- 资助金额:
$ 54.96万 - 项目类别:
Efficacy and implementation of exercise-based smoking cessation treatment for adults with high anxiety sensitivity
以运动为基础的戒烟治疗对高焦虑敏感性成人的疗效和实施
- 批准号:
10660767 - 财政年份:2023
- 资助金额:
$ 54.96万 - 项目类别:
Veteran Social Support Intervention for Enhancing Smoking Treatment Utilization and Cessation
提高吸烟治疗利用率和戒烟的退伍军人社会支持干预
- 批准号:
10538304 - 财政年份:2023
- 资助金额:
$ 54.96万 - 项目类别: