Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
基本信息
- 批准号:9769745
- 负责人:
- 金额:$ 99.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAlgorithmsAnalytical ChemistryAttributes of ChemicalsBiologicalBiological MarkersBiomedical ResearchChemical StructureChemicalsClinicalCommunitiesComputer SimulationComputers and Advanced InstrumentationComputing MethodologiesCoupledDataData AnalysesDatabasesDependenceDietDiseaseEducational workshopEngineeringExposure toFundingGasesGeneticGoalsHigh Performance ComputingHumanIsotopesLibrariesLiquid substanceMachine LearningMass Spectrum AnalysisMeasurementMeasuresMetabolicMethodologyMethodsMissionMolecularOutcomePacific NorthwestPhasePredictive AnalyticsProbabilityProceduresPropertyReference StandardsResearch PersonnelResolutionResourcesSamplingScienceSerumSourceStandardizationStructureSupercomputingTechniquesTechnologyTestingTimeToxinTrainingUncertaintyUnited States National Institutes of HealthUrineWorkanalytical methodbasechemical propertychemical standardcomparativecomputational chemistrycomputerized toolsdark matterdrug candidatedrug discoveryexperiencegenetic informationhuman diseaseimprovedinnovationinstrumentationion mobilitymetabolomemetabolomicsnon-geneticnovelnovel therapeuticsprogramsquantum chemistrysmall molecule librariesstereochemistrytool
项目摘要
OVERALL SUMMARY
The capability to chemically identify thousands of metabolites and other chemicals in clinical samples will revolutionize
the search for environmental, dietary, and metabolic determinants of disease. By comparison to near-comprehensive genetic
information, comparatively little is understood of the totality of the human metabolome, largely due to insufficiencies in
molecular identification methods. Through innovations in computational chemistry and advanced ion mobility separations
coupled with mass spectrometry, we propose to overcome a significant, long standing obstacle in the field of metabolomics:
the absence of methods for accurate and comprehensive identification of metabolites without relying on data from analysis
of authentic chemical standards. A paradigm shift in metabolomics, we will use gas-phase molecular properties that can be
both accurately predicted computationally and consistently measured experimentally, and which can thus be used for
comprehensive identification of the metabolome without the need for authentic chemical standards. The outcomes of this
proposal directly advance the mission and goals of the NIH Common Fund by: (i) transforming metabolomics science by
enabling consideration of the totality of the human metabolome through optimized identification of currently unidentifiable
molecules, eventually reaching hundreds of thousands of molecules, and (ii) developing standardized computational tools
and analytical methods to increase the national capacity for biomedical researchers to identify metabolites quickly and
accurately. This work is significant because it enables comprehensive and confident chemical measurement of the
metabolome. This work is innovative because it utilizes an integrated quantum-chemistry and machine learning
computational pipeline to accurately predict physical-chemical properties of metabolites coupled to measurements.
总体汇总
化学鉴定临床样本中数千种代谢物和其他化学物质的能力将带来革命性的变化。
对疾病的环境、饮食和代谢决定因素的研究。与几乎全面的遗传学相比,
虽然没有足够的信息,但对人体代谢组的整体了解相对较少,主要是由于
分子鉴定方法通过在计算化学和先进的离子迁移率分离创新
结合质谱分析,我们提出克服代谢组学领域中一个重要的、长期存在的障碍:
缺乏不依赖分析数据而准确和全面鉴定代谢物的方法
真正的化学标准。代谢组学的范式转变,我们将使用气相分子特性,
这两个准确预测的计算和一致的测量实验,因此可以用于
代谢组的全面鉴定,而不需要真实的化学标准。这个结果
该提案通过以下方式直接推进NIH共同基金的使命和目标:(i)通过以下方式转变代谢组学科学
通过优化鉴定目前无法鉴定的代谢物,
分子,最终达到数十万个分子,以及(ii)开发标准化的计算工具
和分析方法,以提高国家生物医学研究人员快速鉴定代谢物的能力,
准确地这项工作很重要,因为它可以对化学物质进行全面且自信的化学测量
代谢组这项工作是创新的,因为它利用了集成的量子化学和机器学习
计算流水线,以准确地预测与测量耦合的代谢物的物理化学性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas O Metz其他文献
Protection of beta cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling
GDF15-ERBB2 信号传导保护 β 细胞免受促炎细胞因子应激
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Soumyadeep Sarkar;Farooq Syed;B. Webb;John T. Melchior;G. Chang;Marina A. Gritsenko;Yi;Chia;Jing Liu;Xiaoyan Yi;Yi Cui;D. Eizirik;Thomas O Metz;Marian J Rewers;C. Evans;R. Mirmira;Ernesto S. Nakayasu - 通讯作者:
Ernesto S. Nakayasu
Thomas O Metz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas O Metz', 18)}}的其他基金
The Integrated Stress Response in Human Islets During Early T1D
早期 T1D 期间人体胰岛的综合应激反应
- 批准号:
10592566 - 财政年份:2020
- 资助金额:
$ 99.86万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10260964 - 财政年份:2018
- 资助金额:
$ 99.86万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10213202 - 财政年份:2018
- 资助金额:
$ 99.86万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10012251 - 财政年份:2018
- 资助金额:
$ 99.86万 - 项目类别:
Label-free polar metabolite quantification for untargeted metabolomics
用于非靶向代谢组学的无标记极性代谢物定量
- 批准号:
10396924 - 财政年份:2018
- 资助金额:
$ 99.86万 - 项目类别:
Next generation, 'Standards-Free' Metabolite Identification Pipeline
下一代“无标准”代谢物鉴定管道
- 批准号:
9433322 - 财政年份:2017
- 资助金额:
$ 99.86万 - 项目类别:
Validation of Novel Peptide/Protein Markers for Diagnosis of Type 1 Diabetes
用于诊断 1 型糖尿病的新型肽/蛋白质标记物的验证
- 批准号:
8495451 - 财政年份:2012
- 资助金额:
$ 99.86万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 99.86万 - 项目类别:
Research Grant














{{item.name}}会员




