The Integrated Stress Response in Human Islets During Early T1D

早期 T1D 期间人体胰岛的综合应激反应

基本信息

  • 批准号:
    10592566
  • 负责人:
  • 金额:
    $ 40.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT The project, Integrated Stress Response in Human Islets During Early Type 1 Diabetes (T1D), hypothesizes that the activation of the integrated stress response and formation of stress granules is an early cellular response initiating β cell stress in T1D that determines cell survival and can be monitored in pre- and early-T1D individuals with minimal invasiveness. A multidisciplinary Team science approach is being taken to test this hypothesis, collecting a large suite of heterogenous data, such as mRNA, lipidomics, proteomics and immunologic measurements. Machine learning is being used to extract a multi-biomarker panel to aid in stratifying stress in human islets and translating these findings to individuals at-risk for T1D and new-onset T1D. Although we are formatting the multi-omics data for this specific machine learning task within the parent grant, the data being generated, as well as our data collected from prior collaborations, are not generally AI/ML-ready for general application of methods. They are however excellent candidates to be used as “flagship” datasets for AI/ML readiness, both to test novel AI/ML approaches to tackle data pre-processing challenges and to extract molecular signatures of T1D. These two gaps in analyses are the central themes of two aims. The first aim focuses on the generation of AI/ML ready omics datasets that are properly annotated to address challenges in sparsity and bias, such as imputation and batch correction. The second aim focuses AI/ML ready multi-omic datasets to enable new studies in using machine learning to elicit biomarkers and pathway-level molecular signatures from the data focused on standard AI/ML methods, as well as those specialized for small sample size. Dataset machine learning model cards will be utilized to better enable to AI/ML research communities to utilize these datasets in an efficient manner. For both aims there is a key focus on generating reusable software approaches to generate data packages that can be directly imported into the most common AI/ML packages and released to the AI/ML community through a variety of resources that enable feedback to continually improve and refine the AI/ML readiness software development plan.
摘要 该项目,在人类胰岛综合应激反应在早期1型糖尿病(T1 D),假设, 整合应激反应的激活和应激颗粒的形成是早期细胞反应 在T1 D中启动β细胞应激,决定细胞存活,并可在T1 D前和早期个体中监测 以最小的侵入性。一个多学科的团队科学方法正在采取测试这一假设, 收集大量的异质性数据,如mRNA、脂质组学、蛋白质组学和免疫学 测量.机器学习被用于提取多生物标志物面板,以帮助对压力进行分层, 人类胰岛,并将这些发现转化为T1 D和新发T1 D风险个体。虽然我们 在父授权内格式化用于该特定机器学习任务的多组学数据,该数据被 生成的数据,以及我们从以前的合作中收集的数据,通常不适合AI/ML。 方法的应用。然而,它们是用作AI/ML“旗舰”数据集的优秀候选者 准备就绪,既可以测试新的AI/ML方法来解决数据预处理挑战,也可以提取分子 T1 D的签名分析中的这两个差距是两个目标的中心主题。第一个目标集中在 生成AI/ML就绪的组学数据集,这些数据集经过适当注释,以解决稀疏性和偏差方面的挑战, 例如插补和批量校正。第二个目标关注AI/ML就绪的多组学数据集, 使用机器学习从数据中提取生物标志物和途径水平分子特征的新研究 专注于标准AI/ML方法,以及那些专门用于小样本量的方法。数据集机器 学习模型卡将用于更好地使AI/ML研究社区能够利用这些数据集, 高效的方式。对于这两个目标,都有一个关键的重点是生成可重用的软件方法,以生成 数据包,可以直接导入到最常见的AI/ML包中,并发布到AI/ML 社区通过各种资源,使反馈不断改进和完善AI/ML 准备软件开发计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas O Metz其他文献

Protection of beta cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling
GDF15-ERBB2 信号传导保护 β 细胞免受促炎细胞因子应激
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soumyadeep Sarkar;Farooq Syed;B. Webb;John T. Melchior;G. Chang;Marina A. Gritsenko;Yi;Chia;Jing Liu;Xiaoyan Yi;Yi Cui;D. Eizirik;Thomas O Metz;Marian J Rewers;C. Evans;R. Mirmira;Ernesto S. Nakayasu
  • 通讯作者:
    Ernesto S. Nakayasu

Thomas O Metz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas O Metz', 18)}}的其他基金

Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    9769745
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10213203
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10260964
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10213202
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10012251
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
Label-free polar metabolite quantification for untargeted metabolomics
用于非靶向代谢组学的无标记极性代谢物定量
  • 批准号:
    10396924
  • 财政年份:
    2018
  • 资助金额:
    $ 40.13万
  • 项目类别:
Next generation, 'Standards-Free' Metabolite Identification Pipeline
下一代“无标准”代谢物鉴定管道
  • 批准号:
    9433322
  • 财政年份:
    2017
  • 资助金额:
    $ 40.13万
  • 项目类别:
Validation of Novel Peptide/Protein Markers for Diagnosis of Type 1 Diabetes
用于诊断 1 型糖尿病的新型肽/蛋白质标记物的验证
  • 批准号:
    8495451
  • 财政年份:
    2012
  • 资助金额:
    $ 40.13万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    9769747
  • 财政年份:
  • 资助金额:
    $ 40.13万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 40.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了