Label-free polar metabolite quantification for untargeted metabolomics
用于非靶向代谢组学的无标记极性代谢物定量
基本信息
- 批准号:10396924
- 负责人:
- 金额:$ 21.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:CalibrationClinicalDataDevelopmentExperimental DesignsGoalsIndustrializationIsotope LabelingIsotopesKnowledgeKynurenic AcidLabelLegalMainstreamingMeasuresMethodsReproducibilityResearchSamplingSignal TransductionTestingTimeUnited States National Institutes of HealthWorkbasecase controldata sharingimprovedinterestmembermetabolomicsnovel
项目摘要
SUMMARY
The primary focus of the NIH Compound Identification Development Cores (CIDC) is to use untargeted
metabolomics to not only identify novel metabolites but to facilitate and improve the identification of known
metabolites. Furthermore, the CIDC is mandated to promote the accuracy, reproducibility, and interlaboratory
comparison of metabolomics data. One way of promoting reproducibility, improving comparability and enhancing
the confidence of metabolite identification is to improve metabolite quantification -- especially for untargeted
metabolomics. Indeed, as frequently shown by untargeted NMR studies, knowledge of the concentration limits
of a particular metabolite can “rule-in” or “rule-out” a tentative identification. For instance, if a metabolite signal
is tentatively identified as kynurenic acid, but the measured concentration is determined to be 100X times more
than normal, then that tentative identification must be incorrect and thus, “ruled out”. Traditionally compound
quantification in metabolomics (especially absolute quantification) has been limited to targeted metabolomics
while untargeted methods have largely relied on relative quantification. Absolute quantification by LC-MS is
difficult and requires isotopically labeled standards and careful calibration. Isotopic standards are expensive and
difficult to obtain. As a result, the number of metabolites that can be routinely quantified by targeted LC-MS-
based methods is generally less than 500. On the other hand, relative quantification is much easier and it is
possible to use peak intensity comparisons between “cases” and “controls” to relatively quantify thousands of
compounds with little effort. However, relative quantification has many limitations and numerous problems. In
particular, relative values cannot be compared across labs, across platforms, or even over modestly separate
time periods within the same lab (batch effects). This makes relative quantification fundamentally “unFAIR” from
a data sharing or reproducibility perspective. Furthermore, relative quantification only works for certain limited
experimental designs (cases vs. controls) and relative values can never be used in clinical, legal or industrial test
settings. This limits the application of untargeted metabolomics to “research-use only”. If untargeted
metabolomics is ever going to expand beyond the lab and into the mainstream, it will need to develop robust,
label-free quantification methods that can work across different samples, across platforms, across labs and
across time. The challenge is how to perform metabolite quantification via LC-MS without isotopic standards?
Fortunately, there have been a number of recent developments and novel ideas that integrate both experimental
and computation approaches that suggest it may be possible to perform accurate metabolite quantification via
untargeted LC-MS metabolomics without isotopically labeled standards. Our goal is to implement, test and refine
these methods, specifically for polar metabolites, and make them available to all interested CIDC members.
总结
NIH化合物鉴定开发核心(CIDC)的主要重点是使用非靶向的
代谢组学不仅可以识别新的代谢物,还可以促进和改善已知代谢物的识别。
代谢物。此外,CIDC的任务是促进准确性,再现性和实验室间
代谢组学数据的比较。促进可重复性、提高可比性和增强
代谢物鉴定的可信度是提高代谢物的定量,特别是对于非靶向代谢物,
代谢组学事实上,正如非靶向NMR研究经常显示的那样,
特定代谢物的浓度可以“纳入”或“排除”试验性鉴定。例如,如果代谢物信号
暂时被鉴定为犬尿烯酸,但测得的浓度是100倍以上
那么,该临时标识一定是不正确,因此,“被排除”。传统复合
代谢组学中的定量(尤其是绝对定量)仅限于靶向代谢组学
而非靶向方法主要依赖于相对定量。通过LC-MS的绝对定量为
这是困难的,需要同位素标记的标准品和仔细的校准。同位素标准品价格昂贵,
很难获得。因此,可以通过靶向LC-MS-MS常规定量的代谢物的数量
方法一般小于500。另一方面,相对量化更容易,
可以使用“病例”和“对照”之间的峰值强度比较来相对量化数千个
不费吹灰之力就合成了。然而,相对量化有许多局限性和许多问题。在
特别是,相对值不能在实验室之间、平台之间、甚至在稍微分开的平台之间进行比较。
同一实验室内的时间段(批次效应)。这使得相对量化从根本上“不公平”,
数据共享或再现性的观点。此外,相对量化仅适用于某些有限的
实验设计(病例与对照)和相对值绝不能用于临床、法律的或工业试验
设置.这限制了非靶向代谢组学的应用,“仅供研究使用”。如果非靶向
代谢组学要想超越实验室,进入主流,它需要发展强大的,
无标记的定量方法,可以在不同的样品,跨平台,跨实验室和
穿越时空挑战是如何在没有同位素标准品的情况下通过LC-MS进行代谢物定量?
幸运的是,最近出现了一些新的发展和新的想法,将实验性的
和计算方法,这表明有可能进行准确的代谢物定量,
无同位素标记标准品的非靶向LC-MS代谢组学。我们的目标是实施、测试和完善
这些方法,特别是极性代谢物,并使他们提供给所有感兴趣的CIDC成员。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An initial investigation of accuracy required for the identification of small molecules in complex samples using quantum chemical calculated NMR chemical shifts.
- DOI:10.1186/s13321-022-00587-7
- 发表时间:2022-09-22
- 期刊:
- 影响因子:8.6
- 作者:
- 通讯作者:
CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification.
- DOI:10.1021/acs.analchem.1c01465
- 发表时间:2021-08-31
- 期刊:
- 影响因子:7.4
- 作者:Wang, Fei;Liigand, Jaanus;Tian, Siyang;Arndt, David;Greiner, Russell;Wishart, David S.
- 通讯作者:Wishart, David S.
Mass Spectrometry Adduct Calculator.
- DOI:10.1021/acs.jcim.1c00579
- 发表时间:2021-12-27
- 期刊:
- 影响因子:5.6
- 作者:Blumer, Madison R.;Chang, Christine H.;Brayfindley, Evangelina;Nunez, Jamie R.;Colby, Sean M.;Renslow, Ryan S.;Metz, Thomas O.
- 通讯作者:Metz, Thomas O.
DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data.
Deimos:用于处理高维质谱数据的开源工具。
- DOI:10.1021/acs.analchem.1c05017
- 发表时间:2022-04-26
- 期刊:
- 影响因子:7.4
- 作者:Colby, Sean M.;Chang, Christine H.;Bade, Jessica L.;Nunez, Jamie R.;Blumer, Madison R.;Orton, Daniel J.;Bloodsworth, Kent J.;Nakayasu, Ernesto S.;Smith, Richard D.;Ibrahim, Yehia M.;Renslow, Ryan S.;Metz, Thomas O.
- 通讯作者:Metz, Thomas O.
CFM-ID 4.0 - a web server for accurate MS-based metabolite identification.
- DOI:10.1093/nar/gkac383
- 发表时间:2022-07-05
- 期刊:
- 影响因子:14.9
- 作者:Wang, Fei;Allen, Dana;Tian, Siyang;Oler, Eponine;Gautam, Vasuk;Greiner, Russell;Metz, Thomas O.;Wishart, David S.
- 通讯作者:Wishart, David S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas O Metz其他文献
Protection of beta cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling
GDF15-ERBB2 信号传导保护 β 细胞免受促炎细胞因子应激
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Soumyadeep Sarkar;Farooq Syed;B. Webb;John T. Melchior;G. Chang;Marina A. Gritsenko;Yi;Chia;Jing Liu;Xiaoyan Yi;Yi Cui;D. Eizirik;Thomas O Metz;Marian J Rewers;C. Evans;R. Mirmira;Ernesto S. Nakayasu - 通讯作者:
Ernesto S. Nakayasu
Thomas O Metz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas O Metz', 18)}}的其他基金
The Integrated Stress Response in Human Islets During Early T1D
早期 T1D 期间人体胰岛的综合应激反应
- 批准号:
10592566 - 财政年份:2020
- 资助金额:
$ 21.78万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
9769745 - 财政年份:2018
- 资助金额:
$ 21.78万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10260964 - 财政年份:2018
- 资助金额:
$ 21.78万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10213202 - 财政年份:2018
- 资助金额:
$ 21.78万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10012251 - 财政年份:2018
- 资助金额:
$ 21.78万 - 项目类别:
Next generation, 'Standards-Free' Metabolite Identification Pipeline
下一代“无标准”代谢物鉴定管道
- 批准号:
9433322 - 财政年份:2017
- 资助金额:
$ 21.78万 - 项目类别:
Validation of Novel Peptide/Protein Markers for Diagnosis of Type 1 Diabetes
用于诊断 1 型糖尿病的新型肽/蛋白质标记物的验证
- 批准号:
8495451 - 财政年份:2012
- 资助金额:
$ 21.78万 - 项目类别:
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Standard Grant
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
- 批准号:
EP/Y036395/1 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Research Grant
Measurement and analysis of radiotherapy small field dosimetry data to support the development of a simulation training product for clinical Radiotherapy Physicists.
放射治疗小场剂量测定数据的测量和分析,以支持临床放射治疗物理学家模拟培训产品的开发。
- 批准号:
10089179 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Collaborative R&D
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
- 批准号:
10096804 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Collaborative R&D
Development and clinical application of AI model to support diagnosis of dementia using medical big data from electronic medical records
利用电子病历中的医疗大数据支持痴呆症诊断的人工智能模型的开发和临床应用
- 批准号:
22KJ3211 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using clinical polysomnography data and machine learning to determine minimum sensing requirements for pediatric sleep studies
使用临床多导睡眠图数据和机器学习来确定儿科睡眠研究的最低传感要求
- 批准号:
491364 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Operating Grants
Pediatric Hospitals as European drivers for multi-party computation and synthetic data generation capabilities across clinical specialties and data types
儿科医院是欧洲跨临床专业和数据类型多方计算和合成数据生成能力的推动者
- 批准号:
10103799 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
EU-Funded
Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
- 批准号:
MR/Y007816/1 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Research Grant
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Generating Reproducible Real-World Evidence with Multi-Source Data to Capture Unstructured Clinical Endpoints for Chronic Diseases
利用多源数据生成可重复的真实世界证据,以捕获慢性病的非结构化临床终点
- 批准号:
10797849 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:














{{item.name}}会员




