Label-free polar metabolite quantification for untargeted metabolomics

用于非靶向代谢组学的无标记极性代谢物定量

基本信息

  • 批准号:
    10396924
  • 负责人:
  • 金额:
    $ 21.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

SUMMARY The primary focus of the NIH Compound Identification Development Cores (CIDC) is to use untargeted metabolomics to not only identify novel metabolites but to facilitate and improve the identification of known metabolites. Furthermore, the CIDC is mandated to promote the accuracy, reproducibility, and interlaboratory comparison of metabolomics data. One way of promoting reproducibility, improving comparability and enhancing the confidence of metabolite identification is to improve metabolite quantification -- especially for untargeted metabolomics. Indeed, as frequently shown by untargeted NMR studies, knowledge of the concentration limits of a particular metabolite can “rule-in” or “rule-out” a tentative identification. For instance, if a metabolite signal is tentatively identified as kynurenic acid, but the measured concentration is determined to be 100X times more than normal, then that tentative identification must be incorrect and thus, “ruled out”. Traditionally compound quantification in metabolomics (especially absolute quantification) has been limited to targeted metabolomics while untargeted methods have largely relied on relative quantification. Absolute quantification by LC-MS is difficult and requires isotopically labeled standards and careful calibration. Isotopic standards are expensive and difficult to obtain. As a result, the number of metabolites that can be routinely quantified by targeted LC-MS- based methods is generally less than 500. On the other hand, relative quantification is much easier and it is possible to use peak intensity comparisons between “cases” and “controls” to relatively quantify thousands of compounds with little effort. However, relative quantification has many limitations and numerous problems. In particular, relative values cannot be compared across labs, across platforms, or even over modestly separate time periods within the same lab (batch effects). This makes relative quantification fundamentally “unFAIR” from a data sharing or reproducibility perspective. Furthermore, relative quantification only works for certain limited experimental designs (cases vs. controls) and relative values can never be used in clinical, legal or industrial test settings. This limits the application of untargeted metabolomics to “research-use only”. If untargeted metabolomics is ever going to expand beyond the lab and into the mainstream, it will need to develop robust, label-free quantification methods that can work across different samples, across platforms, across labs and across time. The challenge is how to perform metabolite quantification via LC-MS without isotopic standards? Fortunately, there have been a number of recent developments and novel ideas that integrate both experimental and computation approaches that suggest it may be possible to perform accurate metabolite quantification via untargeted LC-MS metabolomics without isotopically labeled standards. Our goal is to implement, test and refine these methods, specifically for polar metabolites, and make them available to all interested CIDC members.
总结

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification.
  • DOI:
    10.1021/acs.analchem.1c01465
  • 发表时间:
    2021-08-31
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wang, Fei;Liigand, Jaanus;Tian, Siyang;Arndt, David;Greiner, Russell;Wishart, David S.
  • 通讯作者:
    Wishart, David S.
Mass Spectrometry Adduct Calculator.
  • DOI:
    10.1021/acs.jcim.1c00579
  • 发表时间:
    2021-12-27
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Blumer, Madison R.;Chang, Christine H.;Brayfindley, Evangelina;Nunez, Jamie R.;Colby, Sean M.;Renslow, Ryan S.;Metz, Thomas O.
  • 通讯作者:
    Metz, Thomas O.
DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data.
Deimos:用于处理高维质谱数据的开源工具。
  • DOI:
    10.1021/acs.analchem.1c05017
  • 发表时间:
    2022-04-26
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Colby, Sean M.;Chang, Christine H.;Bade, Jessica L.;Nunez, Jamie R.;Blumer, Madison R.;Orton, Daniel J.;Bloodsworth, Kent J.;Nakayasu, Ernesto S.;Smith, Richard D.;Ibrahim, Yehia M.;Renslow, Ryan S.;Metz, Thomas O.
  • 通讯作者:
    Metz, Thomas O.
CFM-ID 4.0 - a web server for accurate MS-based metabolite identification.
  • DOI:
    10.1093/nar/gkac383
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Wang, Fei;Allen, Dana;Tian, Siyang;Oler, Eponine;Gautam, Vasuk;Greiner, Russell;Metz, Thomas O.;Wishart, David S.
  • 通讯作者:
    Wishart, David S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas O Metz其他文献

Protection of beta cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling
GDF15-ERBB2 信号传导保护 β 细胞免受促炎细胞因子应激
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soumyadeep Sarkar;Farooq Syed;B. Webb;John T. Melchior;G. Chang;Marina A. Gritsenko;Yi;Chia;Jing Liu;Xiaoyan Yi;Yi Cui;D. Eizirik;Thomas O Metz;Marian J Rewers;C. Evans;R. Mirmira;Ernesto S. Nakayasu
  • 通讯作者:
    Ernesto S. Nakayasu

Thomas O Metz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas O Metz', 18)}}的其他基金

The Integrated Stress Response in Human Islets During Early T1D
早期 T1D 期间人体胰岛的综合应激反应
  • 批准号:
    10592566
  • 财政年份:
    2020
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    9769745
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10213203
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10260964
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10213202
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10012251
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Next generation, 'Standards-Free' Metabolite Identification Pipeline
下一代“无标准”代谢物鉴定管道
  • 批准号:
    9433322
  • 财政年份:
    2017
  • 资助金额:
    $ 21.78万
  • 项目类别:
Validation of Novel Peptide/Protein Markers for Diagnosis of Type 1 Diabetes
用于诊断 1 型糖尿病的新型肽/蛋白质标记物的验证
  • 批准号:
    8495451
  • 财政年份:
    2012
  • 资助金额:
    $ 21.78万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    9769747
  • 财政年份:
  • 资助金额:
    $ 21.78万
  • 项目类别:

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Standard Grant
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Research Grant
Measurement and analysis of radiotherapy small field dosimetry data to support the development of a simulation training product for clinical Radiotherapy Physicists.
放射治疗小场剂量测定数据的测量和分析,以支持临床放射治疗物理学家模拟培训产品的开发。
  • 批准号:
    10089179
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Collaborative R&D
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
  • 批准号:
    10096804
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Collaborative R&D
Pediatric Hospitals as European drivers for multi-party computation and synthetic data generation capabilities across clinical specialties and data types
儿科医院是欧洲跨临床专业和数据类型多方计算和合成数据生成能力的推动者
  • 批准号:
    10103799
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    EU-Funded
Using clinical polysomnography data and machine learning to determine minimum sensing requirements for pediatric sleep studies
使用临床多导睡眠图数据和机器学习来确定儿科睡眠研究的最低传感要求
  • 批准号:
    491364
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Operating Grants
Development and clinical application of AI model to support diagnosis of dementia using medical big data from electronic medical records
利用电子病历中的医疗大数据支持痴呆症诊断的人工智能模型的开发和临床应用
  • 批准号:
    22KJ3211
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
  • 批准号:
    MR/Y007816/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Research Grant
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
Generating Reproducible Real-World Evidence with Multi-Source Data to Capture Unstructured Clinical Endpoints for Chronic Diseases
利用多源数据生成可重复的真实世界证据,以捕获慢性病的非结构化临床终点
  • 批准号:
    10797849
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了