Label-free polar metabolite quantification for untargeted metabolomics

用于非靶向代谢组学的无标记极性代谢物定量

基本信息

  • 批准号:
    10396924
  • 负责人:
  • 金额:
    $ 21.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

SUMMARY The primary focus of the NIH Compound Identification Development Cores (CIDC) is to use untargeted metabolomics to not only identify novel metabolites but to facilitate and improve the identification of known metabolites. Furthermore, the CIDC is mandated to promote the accuracy, reproducibility, and interlaboratory comparison of metabolomics data. One way of promoting reproducibility, improving comparability and enhancing the confidence of metabolite identification is to improve metabolite quantification -- especially for untargeted metabolomics. Indeed, as frequently shown by untargeted NMR studies, knowledge of the concentration limits of a particular metabolite can “rule-in” or “rule-out” a tentative identification. For instance, if a metabolite signal is tentatively identified as kynurenic acid, but the measured concentration is determined to be 100X times more than normal, then that tentative identification must be incorrect and thus, “ruled out”. Traditionally compound quantification in metabolomics (especially absolute quantification) has been limited to targeted metabolomics while untargeted methods have largely relied on relative quantification. Absolute quantification by LC-MS is difficult and requires isotopically labeled standards and careful calibration. Isotopic standards are expensive and difficult to obtain. As a result, the number of metabolites that can be routinely quantified by targeted LC-MS- based methods is generally less than 500. On the other hand, relative quantification is much easier and it is possible to use peak intensity comparisons between “cases” and “controls” to relatively quantify thousands of compounds with little effort. However, relative quantification has many limitations and numerous problems. In particular, relative values cannot be compared across labs, across platforms, or even over modestly separate time periods within the same lab (batch effects). This makes relative quantification fundamentally “unFAIR” from a data sharing or reproducibility perspective. Furthermore, relative quantification only works for certain limited experimental designs (cases vs. controls) and relative values can never be used in clinical, legal or industrial test settings. This limits the application of untargeted metabolomics to “research-use only”. If untargeted metabolomics is ever going to expand beyond the lab and into the mainstream, it will need to develop robust, label-free quantification methods that can work across different samples, across platforms, across labs and across time. The challenge is how to perform metabolite quantification via LC-MS without isotopic standards? Fortunately, there have been a number of recent developments and novel ideas that integrate both experimental and computation approaches that suggest it may be possible to perform accurate metabolite quantification via untargeted LC-MS metabolomics without isotopically labeled standards. Our goal is to implement, test and refine these methods, specifically for polar metabolites, and make them available to all interested CIDC members.
摘要 NIH化合物鉴定开发核心(CIDC)的主要关注点是使用非定向的 代谢组学不仅要识别新的代谢物,而且要促进和改进已知代谢物的鉴定 代谢物。此外,CIDC的任务是促进准确性、重复性和实验室间 代谢组学数据的比较。一种促进重复性、提高可比性和增强 代谢物鉴定的可信度是为了提高代谢物的量化--特别是对于非靶向的 代谢组学。事实上,正如非靶向核磁共振研究经常表明的那样,对浓度限制的了解 一种特定的代谢物可以“排除”或“排除”一种试探性的鉴定。例如,如果一种代谢物信号 初步鉴定为犬尿酸,但测定浓度是犬尿酸的100倍 如果不是正常的,那么这个暂定的身份肯定是不正确的,因此,“排除了”。传统化合物 代谢组学中的量化(尤其是绝对量化)仅限于靶向代谢组学 而非目标方法在很大程度上依赖相对量化。LC-MS的绝对定量为 这很困难,需要同位素标记的标准和仔细的校准。同位素标准很贵,而且 很难获得。因此,可以通过靶向LC-MS常规定量的代谢物的数量。 基于方法的方法通常少于500个。另一方面,相对量化要容易得多,而且确实如此 可以使用“病例”和“对照”之间的峰值强度比较来相对量化数千个 几乎不费力气就能合成化合物。然而,相对量化有许多局限性,也存在诸多问题。在……里面 特别是,相对值不能跨实验室、跨平台进行比较,甚至不能过于分散地进行比较 同一实验室内的时间段(批处理效果)。这使得相对量化从根本上说是“不公平的” 从数据共享或再现性的角度来看。此外,相对量化只适用于某些有限的 试验设计(病例与对照)和相对值永远不能用于临床、法律或工业试验 设置。这将非靶向代谢组学的应用限制在“仅供研究使用”。如果没有目标,则 新陈代谢组学将永远超越实验室,进入主流,它将需要发展强大的, 可跨不同样本、跨平台、跨实验室和 跨越时间。挑战是如何在没有同位素标准的情况下通过LC-MS进行代谢物定量? 幸运的是,已经有了一些最新的发展和新的想法,将这两种实验结合在一起 以及一些计算方法,这些方法表明,通过 无同位素标记标准的非靶向LC-MS代谢组学。我们的目标是实施、测试和完善 这些方法特别针对极性代谢物,并使CIDC所有感兴趣的成员都可以使用这些方法。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification.
  • DOI:
    10.1021/acs.analchem.1c01465
  • 发表时间:
    2021-08-31
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wang, Fei;Liigand, Jaanus;Tian, Siyang;Arndt, David;Greiner, Russell;Wishart, David S.
  • 通讯作者:
    Wishart, David S.
Mass Spectrometry Adduct Calculator.
  • DOI:
    10.1021/acs.jcim.1c00579
  • 发表时间:
    2021-12-27
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Blumer, Madison R.;Chang, Christine H.;Brayfindley, Evangelina;Nunez, Jamie R.;Colby, Sean M.;Renslow, Ryan S.;Metz, Thomas O.
  • 通讯作者:
    Metz, Thomas O.
DEIMoS: An Open-Source Tool for Processing High-Dimensional Mass Spectrometry Data.
Deimos:用于处理高维质谱数据的开源工具。
  • DOI:
    10.1021/acs.analchem.1c05017
  • 发表时间:
    2022-04-26
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Colby, Sean M.;Chang, Christine H.;Bade, Jessica L.;Nunez, Jamie R.;Blumer, Madison R.;Orton, Daniel J.;Bloodsworth, Kent J.;Nakayasu, Ernesto S.;Smith, Richard D.;Ibrahim, Yehia M.;Renslow, Ryan S.;Metz, Thomas O.
  • 通讯作者:
    Metz, Thomas O.
CFM-ID 4.0 - a web server for accurate MS-based metabolite identification.
  • DOI:
    10.1093/nar/gkac383
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Wang, Fei;Allen, Dana;Tian, Siyang;Oler, Eponine;Gautam, Vasuk;Greiner, Russell;Metz, Thomas O.;Wishart, David S.
  • 通讯作者:
    Wishart, David S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas O Metz其他文献

Protection of beta cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling
GDF15-ERBB2 信号传导保护 β 细胞免受促炎细胞因子应激
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Soumyadeep Sarkar;Farooq Syed;B. Webb;John T. Melchior;G. Chang;Marina A. Gritsenko;Yi;Chia;Jing Liu;Xiaoyan Yi;Yi Cui;D. Eizirik;Thomas O Metz;Marian J Rewers;C. Evans;R. Mirmira;Ernesto S. Nakayasu
  • 通讯作者:
    Ernesto S. Nakayasu

Thomas O Metz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas O Metz', 18)}}的其他基金

The Integrated Stress Response in Human Islets During Early T1D
早期 T1D 期间人体胰岛的综合应激反应
  • 批准号:
    10592566
  • 财政年份:
    2020
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    9769745
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10213203
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10260964
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10213202
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
  • 批准号:
    10012251
  • 财政年份:
    2018
  • 资助金额:
    $ 21.78万
  • 项目类别:
Next generation, 'Standards-Free' Metabolite Identification Pipeline
下一代“无标准”代谢物鉴定管道
  • 批准号:
    9433322
  • 财政年份:
    2017
  • 资助金额:
    $ 21.78万
  • 项目类别:
Validation of Novel Peptide/Protein Markers for Diagnosis of Type 1 Diabetes
用于诊断 1 型糖尿病的新型肽/蛋白质标记物的验证
  • 批准号:
    8495451
  • 财政年份:
    2012
  • 资助金额:
    $ 21.78万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    9769747
  • 财政年份:
  • 资助金额:
    $ 21.78万
  • 项目类别:

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Standard Grant
FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Research Grant
Measurement and analysis of radiotherapy small field dosimetry data to support the development of a simulation training product for clinical Radiotherapy Physicists.
放射治疗小场剂量测定数据的测量和分析,以支持临床放射治疗物理学家模拟培训产品的开发。
  • 批准号:
    10089179
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Collaborative R&D
Archer: Next-generation unstructured data access for hospitals and clinical trial sponsors, delivering efficiency, reducing costs and improving care
Archer:为医院和临床试验申办者提供下一代非结构化数据访问,提高效率、降低成本并改善护理
  • 批准号:
    10096804
  • 财政年份:
    2024
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Collaborative R&D
Development and clinical application of AI model to support diagnosis of dementia using medical big data from electronic medical records
利用电子病历中的医疗大数据支持痴呆症诊断的人工智能模型的开发和临床应用
  • 批准号:
    22KJ3211
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using clinical polysomnography data and machine learning to determine minimum sensing requirements for pediatric sleep studies
使用临床多导睡眠图数据和机器学习来确定儿科睡眠研究的最低传感要求
  • 批准号:
    491364
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Operating Grants
Pediatric Hospitals as European drivers for multi-party computation and synthetic data generation capabilities across clinical specialties and data types
儿科医院是欧洲跨临床专业和数据类型多方计算和合成数据生成能力的推动者
  • 批准号:
    10103799
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    EU-Funded
Developing Novel Technology for Data Driven Clinical Decision Making
开发数据驱动临床决策的新技术
  • 批准号:
    MR/Y007816/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
    Research Grant
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
Generating Reproducible Real-World Evidence with Multi-Source Data to Capture Unstructured Clinical Endpoints for Chronic Diseases
利用多源数据生成可重复的真实世界证据,以捕获慢性病的非结构化临床终点
  • 批准号:
    10797849
  • 财政年份:
    2023
  • 资助金额:
    $ 21.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了