Task-Driven 3D Interventional Imaging

任务驱动的 3D 介入成像

基本信息

  • 批准号:
    9899984
  • 负责人:
  • 金额:
    $ 40.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT While intraoperative C-arm cone-beam CT (CBCT) is used in a growing spectrum of minimally invasive image- guided procedures, imaging performance lags behind conventional diagnostic CT – often due to challenges particular to the interventional imaging suite. However, interventional imaging also has a number of distinct ad- vantages with prior studies and planning data providing information about patient anatomy, imaging targets, and potential imaging tasks. Coupling this with the increased flexibility of interventional systems to automatically position the source and detector in arbitrary geometries opens a unique opportunity to do something diagnostic CT cannot do. Specifically, one can use all of the patient-, task-, and procedure-specific information to drive these intervention systems in customized orbits wherein the imaging device, with the help of a mathematical model of imaging performance prediction, can prospectively drive a source-detector trajectory to acquire the most information rich views. Such a “smart” imaging system could automatically maximize imaging performance with better image quality, lower radiation doses, etc. without relying on the experience or expertise of a CT technician. We propose a framework that integrates prior anatomical knowledge and treatment plans, the capability for non-circular orbits, and a definition of the imaging task to drive custom task- and patient- specific source-detector trajectories for 3D interventional imaging. We seek to achieve this task-driven interventional imaging through the following specific aims: Aim 1: Develop foundations for task-driven inter- ventional imaging including a quantitative framework for task-based performance prediction, an optimizer that maximizes regional performance for user-defined tasks. Aim 2: Develop clinical systems for task-driven in- terventional imaging including methods to command two state-of-the-art clinical C-arms – a floor-mounted robotic C-arm and a mobile C-arm, Cios Spin – in optimized task-driven trajectories. Aim 3: Conduct clinical pilot studies for an initial evaluation of task-driven imaging in patients. A pilot study is planned for two clinical target applications: prostatic artery embolization and cervical spine fusion which are traditionally chal- lenged by difficult anatomy and interventional hardware that can severely degrade measurements in specific views. Safety and feasibility of the proposed task-driven imaging approach will be established and preliminary data on relative performance and observer preference test will be conducted to inform future clinical studies. Successful completion of these aims begins opens a new paradigm for task-driven interventional imaging that rigorously leverages patient-specific prior information to acquire and reconstruct data that is optimal for specific interventional imaging tasks.
项目总结/摘要 虽然术中C形臂锥形束CT(CBCT)用于越来越多的微创图像中,但 引导程序,成像性能落后于传统的诊断CT -通常是由于挑战 特别是介入成像套件。然而,介入成像也有一些不同的广告, 利用先前研究和计划数据提供有关患者解剖结构、成像目标和 潜在的成像任务。再加上介入系统的灵活性增加, 将源和探测器放置在任意几何形状中,为进行诊断提供了独特的机会 CT做不到。具体而言,可以使用所有患者、任务和程序特定信息来驱动 这些介入系统在定制的轨道中,其中成像设备借助于数学模型, 成像性能预测的模型,可以前瞻性地驱动源-探测器轨迹以获取 最丰富的信息视图。这种“智能”成像系统可以自动最大化成像性能 具有更好的图像质量、更低的辐射剂量等,而不依赖于CT的经验或专业知识 技师我们提出了一个框架,整合了以前的解剖知识和治疗计划, 非圆形轨道的能力,以及成像任务的定义,以推动自定义任务和患者 用于3D介入成像的特定源-探测器轨迹。我们力求实现这一任务驱动的 介入成像通过以下具体目标:目标1:为任务驱动的介入成像奠定基础, 本发明涉及一种常规成像,包括用于基于任务的性能预测的定量框架、 最大限度地提高用户定义任务的区域性能。目标2:开发临床系统,用于任务驱动的 介入成像,包括控制两个最先进的临床C形臂的方法-一个落地式 机器人C形臂和移动的C形臂Cios Spin-优化的任务驱动轨迹。目标3:开展临床 初步评估患者任务驱动成像的试点研究。计划对两个国家进行试点研究, 临床目标应用:前列腺动脉栓塞和颈椎融合,这是传统的挑战, 被复杂的解剖结构和介入硬件所困扰,可能会严重降低特定 意见.将建立并初步确定拟议的任务驱动成像方法的安全性和可行性 将进行相对性能和观察者偏好测试的数据,以告知未来的临床研究。 这些目标的成功完成为任务驱动的介入成像开启了一个新的范例, 严格地利用患者特异性先验信息来获取和重建对于特定患者而言最佳的数据。 介入成像任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH Webster STAYMAN其他文献

JOSEPH Webster STAYMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH Webster STAYMAN', 18)}}的其他基金

Task-Driven 3D Interventional Imaging
任务驱动的 3D 介入成像
  • 批准号:
    10382316
  • 财政年份:
    2019
  • 资助金额:
    $ 40.54万
  • 项目类别:
Spectral-spatial filtering for efficient multi-material decomposition in x-ray CT
用于 X 射线 CT 中高效多材料分解的谱空间滤波
  • 批准号:
    9751293
  • 财政年份:
    2018
  • 资助金额:
    $ 40.54万
  • 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
  • 批准号:
    9902426
  • 财政年份:
    2018
  • 资助金额:
    $ 40.54万
  • 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
  • 批准号:
    9603931
  • 财政年份:
    2018
  • 资助金额:
    $ 40.54万
  • 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
  • 批准号:
    8926430
  • 财政年份:
    2014
  • 资助金额:
    $ 40.54万
  • 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
  • 批准号:
    8733325
  • 财政年份:
    2014
  • 资助金额:
    $ 40.54万
  • 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
  • 批准号:
    8588925
  • 财政年份:
    2013
  • 资助金额:
    $ 40.54万
  • 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
  • 批准号:
    8445513
  • 财政年份:
    2013
  • 资助金额:
    $ 40.54万
  • 项目类别:
An Integrated CT-based Image-Guided Neurosurgical System
基于 CT 的集成图像引导神经外科系统
  • 批准号:
    6886410
  • 财政年份:
    2005
  • 资助金额:
    $ 40.54万
  • 项目类别:
Interactive intraoperative imaging with cone beam CT
锥形束 CT 交互式术中成像
  • 批准号:
    7228457
  • 财政年份:
    2004
  • 资助金额:
    $ 40.54万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 40.54万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了