Task-Driven 3D Interventional Imaging
任务驱动的 3D 介入成像
基本信息
- 批准号:10382316
- 负责人:
- 金额:$ 50.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnatomyArteriesAutomationBedsCervical spineCharacteristicsClinicalClinical ResearchComputer softwareCouplingCustomDataDependenceDevicesDiagnosticDiagnostic ImagingDoseEvaluationEvaluation StudiesFloorFoundationsFreedomFutureGeometryImageImaging DeviceImplantInterventionInterventional ImagingKnowledgeLocationLow Dose RadiationMathematicsMeasurementMethodologyMethodsModelingMotionMovementNoiseOcular orbitPatientsPelvisPerformancePilot ProjectsPositioning AttributeProceduresProstateProstaticRadiation Dose UnitRoboticsRodRoentgen RaysShoulderSiteSourceSpeedSystemTask PerformancesTechniquesTestingTherapeutic EmbolizationTissuesarmbasebonecone-beam computed tomographydata acquisitiondetectorexperienceexperimental studyflexibilityimage guidedimage guided interventionimage reconstructionimaging approachimaging propertiesimaging systeminterestmathematical modelminimally invasivenovelpredictive modelingpreferenceprospectivereconstructionsafety and feasibilitysample fixationtargeted imagingtreatment planningtrendvirtual
项目摘要
PROJECT SUMMARY / ABSTRACT
While intraoperative C-arm cone-beam CT (CBCT) is used in a growing spectrum of minimally invasive image-
guided procedures, imaging performance lags behind conventional diagnostic CT – often due to challenges
particular to the interventional imaging suite. However, interventional imaging also has a number of distinct ad-
vantages with prior studies and planning data providing information about patient anatomy, imaging targets, and
potential imaging tasks. Coupling this with the increased flexibility of interventional systems to automatically
position the source and detector in arbitrary geometries opens a unique opportunity to do something diagnostic
CT cannot do. Specifically, one can use all of the patient-, task-, and procedure-specific information to drive
these intervention systems in customized orbits wherein the imaging device, with the help of a mathematical
model of imaging performance prediction, can prospectively drive a source-detector trajectory to acquire the
most information rich views. Such a “smart” imaging system could automatically maximize imaging performance
with better image quality, lower radiation doses, etc. without relying on the experience or expertise of a CT
technician. We propose a framework that integrates prior anatomical knowledge and treatment plans, the
capability for non-circular orbits, and a definition of the imaging task to drive custom task- and patient-
specific source-detector trajectories for 3D interventional imaging. We seek to achieve this task-driven
interventional imaging through the following specific aims: Aim 1: Develop foundations for task-driven inter-
ventional imaging including a quantitative framework for task-based performance prediction, an optimizer that
maximizes regional performance for user-defined tasks. Aim 2: Develop clinical systems for task-driven in-
terventional imaging including methods to command two state-of-the-art clinical C-arms – a floor-mounted
robotic C-arm and a mobile C-arm, Cios Spin – in optimized task-driven trajectories. Aim 3: Conduct clinical
pilot studies for an initial evaluation of task-driven imaging in patients. A pilot study is planned for two
clinical target applications: prostatic artery embolization and cervical spine fusion which are traditionally chal-
lenged by difficult anatomy and interventional hardware that can severely degrade measurements in specific
views. Safety and feasibility of the proposed task-driven imaging approach will be established and preliminary
data on relative performance and observer preference test will be conducted to inform future clinical studies.
Successful completion of these aims begins opens a new paradigm for task-driven interventional imaging that
rigorously leverages patient-specific prior information to acquire and reconstruct data that is optimal for specific
interventional imaging tasks.
项目摘要/摘要
虽然术中C臂锥束CT(CBCT)被用于越来越多的微创图像-
引导程序,成像性能落后于传统的诊断性CT-通常是由于挑战
尤其是介入成像套件。然而,介入性成像也有许多独特的广告-
利用先前的研究和规划数据提供有关患者解剖、成像靶点和
潜在的成像任务。这与介入系统增加的灵活性相结合,可以自动
将信号源和探测器放置在任意几何位置为进行某些诊断提供了独特的机会
CT做不到。具体地说,人们可以使用所有特定于患者、任务和程序的信息来驱动
这些干预系统在定制的轨道上,其中成像设备,在数学的帮助下
成像性能预测模型,可以前瞻性地驱动一个源-探测器的轨迹来获取
大多数信息丰富的视图。这样一个智能成像系统可以自动实现成像性能的最大化
具有更好的图像质量、更低的辐射剂量等,而不依赖于CT的经验或专业知识
技术员。我们提出了一个整合了先前的解剖学知识和治疗计划的框架,
非圆形轨道的能力,以及成像任务的定义,以驱动定制任务-和患者-
3D介入成像的特定源-探测器轨迹。我们寻求实现这一任务驱动的目标
通过以下具体目标进行介入性成像:目标1:为任务驱动的介入成像奠定基础
事件成像包括一个用于基于任务的性能预测的量化框架、一个优化器
最大限度地提高用户定义任务的区域性能。目标2:开发以任务为导向的临床系统
介入性成像包括指挥两个最先进的临床C臂-地板安装的方法
机器人C形臂和移动C形臂,CIO旋转优化的任务驱动轨迹。目标3:指导临床
初步评估患者的任务驱动成像的先导性研究。计划对两个人进行一项初步研究
临床靶向应用:传统的前列腺动脉栓塞术和颈椎融合术。
由于复杂的解剖和介入性硬件而变得冗长,可能会严重降低特定的
视图。提出的任务驱动成像方法的安全性和可行性将被建立并初步
将进行相对性能和观察者偏好测试的数据,以便为未来的临床研究提供信息。
这些目标的成功完成开启了任务驱动的介入成像的新范式,
严格利用患者特定的先验信息来获取和重建最适合特定患者的数据
介入性成像任务。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing pelvic structures in the presence of metal hip prothesis via non-circular CBCT orbits.
通过非圆形 CBCT 轨道显示金属髋关节假体存在下的骨盆结构。
- DOI:10.1117/12.2652980
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Reynolds,Tess;Ma,Yiqun;Wang,Tianyu;Mei,Kai;Noël,PeterB;Gang,GraceJ;Stayman,JWebster
- 通讯作者:Stayman,JWebster
Extended Intraoperative Longitudinal 3-Dimensional Cone Beam Computed Tomography Imaging With a Continuous Multi-Turn Reverse Helical Scan.
- DOI:10.1097/rli.0000000000000885
- 发表时间:2022-11-01
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
Metal-Tolerant Noncircular Orbit Design and Implementation on Robotic C-Arm Systems.
机器人 C 臂系统的金属耐受非圆形轨道设计和实现。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gang,GraceJ;Russ,Tom;Ma,Yiqun;Toennes,Christian;Siewerdsen,JeffreyH;Schad,LotharR;Stayman,JWebster
- 通讯作者:Stayman,JWebster
Universal orbit design for metal artifact elimination.
用于消除金属工件的通用轨道设计。
- DOI:10.1088/1361-6560/ac6aa0
- 发表时间:2022
- 期刊:
- 影响因子:3.5
- 作者:Gang,GraceJ;Stayman,JWebster
- 通讯作者:Stayman,JWebster
Non-circular CBCT orbit design and realization on a clinical robotic C-arm for metal artifact reduction.
用于减少金属伪影的临床机器人 C 形臂上的非圆形 CBCT 轨道设计和实现。
- DOI:10.1117/12.2612448
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ma,Yiqun;Gang,GraceJ;Ehtiati,Tina;Reynolds,Tess;Russ,Tom;Wang,Wenying;Weiss,Clifford;Theodore,Nicholas;Hong,Kelvin;Siewerdsen,Jeffrey;Stayman,JWebster
- 通讯作者:Stayman,JWebster
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH Webster STAYMAN其他文献
JOSEPH Webster STAYMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH Webster STAYMAN', 18)}}的其他基金
Spectral-spatial filtering for efficient multi-material decomposition in x-ray CT
用于 X 射线 CT 中高效多材料分解的谱空间滤波
- 批准号:
9751293 - 财政年份:2018
- 资助金额:
$ 50.2万 - 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
- 批准号:
9902426 - 财政年份:2018
- 资助金额:
$ 50.2万 - 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
- 批准号:
9603931 - 财政年份:2018
- 资助金额:
$ 50.2万 - 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
- 批准号:
8926430 - 财政年份:2014
- 资助金额:
$ 50.2万 - 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
- 批准号:
8733325 - 财政年份:2014
- 资助金额:
$ 50.2万 - 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
- 批准号:
8588925 - 财政年份:2013
- 资助金额:
$ 50.2万 - 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
- 批准号:
8445513 - 财政年份:2013
- 资助金额:
$ 50.2万 - 项目类别:
An Integrated CT-based Image-Guided Neurosurgical System
基于 CT 的集成图像引导神经外科系统
- 批准号:
6886410 - 财政年份:2005
- 资助金额:
$ 50.2万 - 项目类别:
Interactive intraoperative imaging with cone beam CT
锥形束 CT 交互式术中成像
- 批准号:
7228457 - 财政年份:2004
- 资助金额:
$ 50.2万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 50.2万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 50.2万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 50.2万 - 项目类别:
Studentship