Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT

使用负重定量锥形束CT监测内固定器骨折

基本信息

  • 批准号:
    9603931
  • 负责人:
  • 金额:
    $ 36.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT The healthcare burden of fractures is exacerbated for patients who suffer from non-unions and delayed unions. Prediction of non-unions and development of new therapies stimulating bone growth is challenged by a lack of quantitative, non-invasive tests to simultaneously assess the two primary aspects of bone healing: (i) mineral density of the callus and fracture gap; and (ii) mechanical stability under weight-bearing. To address this challenge, we proposed to use a novel extremity cone-beam CT system (CBCT) that provides a unique capability of weight-bearing 3D imaging at high spatial resolution. This will allow measurement of the motion of bone fragments by estimating their displacement between weight-bearing and non-weight-bearing scans of the extremity. In addition, much like conventional CT, CBCT can perform bone mineral density (BMD) measurements of the fracture. To enable quantitative weight-bearing assessment of fracture repair on extremities CBCT, artifacts and image nonuniformity due to metal fixation hardware must be mitigated. The scientific premise of this work is that the effects of metal hardware can be minimized by a combination of novel Dual Energy (DE) techniques suitable for extremities CBCT and advanced model-based image reconstruction (MBIR) incorporating prior knowledge of the surgical hardware. DE imaging will provide a robust correction of the attenuation value inaccuracy due to beam hardening. Efficient, single-scan implementation of DE CBCT will be achieved using the innovative multi-source configuration on the extremities CBCT scanner. The Known-Component Reconstruction algorithm (KCR) will be used to address metal-induced photon starvation and nonlinear partial volume effects by exploiting prior knowledge of the shape and pose of the metal component. Inherent in this approach is a component registration step that will provide a precise estimate of implant deformation under weight-bearing, resulting in a novel approach to asses fracture stability. The following specific aims will be pursued: 1) Enable Dual Energy CBCT from multi-source CBCT data by means of an novel DE MBIR algorithm and optimized DE imaging protocols to yield detection of ~5% relative change in bone mineral density in phantoms; 2) Integrate prior knowledge of surgical hardware in MBIR DE reconstruction by exploiting accurate (~0.5 mm Target Registration Error) deformable 3D-2D registration of fracture fixation hardware to estimate component pose and deformation; 3) Perform clinical translation of the Known-Component DE algorithms in implanted cadaveric extremities under controlled load and in pilot patient study. Fracture patients will be imaged at 2, 4, 8 and 12 weeks post-fracture to demonstrate detection of changes in callus mineralization during fracture repair. This research will establish an innovative quantitative imaging approach for simultaneous, non-invasive assessment of two primary biomarkers of fracture repair: mineralization of the callus and fracture gap, and mechanical stability of the bone-implant construct under load.
项目总结/摘要 骨折的医疗负担对于患有骨不连和延迟愈合的患者来说是加重的。 骨不连的预测和刺激骨生长的新疗法的开发受到缺乏的挑战 定量、非侵入性测试,同时评估骨愈合的两个主要方面:(i)矿物质 骨痂和骨折间隙的密度;和(ii)负重下的机械稳定性。为了解决这个 挑战,我们提出使用一种新型的四肢锥束CT系统(CBCT),提供了一个独特的能力, 高空间分辨率的承重三维成像。这将允许测量骨骼的运动 通过估计碎片在负重和非负重扫描之间的位移, 上肢的此外,与传统CT非常相似,CBCT可以进行骨密度(BMD)测量 骨折处为了能够在四肢CBCT上定量评估骨折修复的负重, 必须减轻由于金属固定硬件引起的伪影和图像不均匀性。科学的前提是 这项工作是,金属硬件的影响可以最小化的组合,新的双能(DE) 适用于四肢CBCT和先进的基于模型的图像重建(MBIR)的技术, 对手术器械的先验知识。DE成像将提供衰减值的稳健校正 由于射束硬化而导致的不准确性。DE CBCT的高效、单次扫描实施将使用 四肢CBCT扫描仪的创新多源配置。已知分量重构 算法(KCR)将用于解决金属诱导的光子饥饿和非线性部分体积效应, 利用金属部件的形状和姿态的先验知识。这种方法固有的是 部件配准步骤,将提供植入物在负重下变形的精确估计, 从而产生了一种评估骨折稳定性的新方法。将追求以下具体目标:1)使 通过一种新的DE MBIR算法和优化的DE从多源CBCT数据进行双能量CBCT 成像方案,以检测体模中约5%的骨矿物质密度相对变化; 2)整合 通过利用精确(~0.5 mm目标),在MBIR DE重建中对手术硬件的先验知识 配准误差)骨折固定硬件的可变形3D-2D配准,以估计组件姿态, 变形; 3)在植入的尸体中执行已知分量DE算法的临床翻译 四肢在控制负荷和试点患者研究。骨折患者将在2、4、8和12时进行成像 骨折后10周,以证明骨折修复过程中骨痂矿化的变化。这 研究将建立一种创新的定量成像方法,用于同时进行非侵入性评估 骨折修复的两个主要生物标志物:骨痂和骨折间隙的矿化和机械稳定性 骨-植入物结构在载荷下的应力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH Webster STAYMAN其他文献

JOSEPH Webster STAYMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH Webster STAYMAN', 18)}}的其他基金

Task-Driven 3D Interventional Imaging
任务驱动的 3D 介入成像
  • 批准号:
    9899984
  • 财政年份:
    2019
  • 资助金额:
    $ 36.84万
  • 项目类别:
Task-Driven 3D Interventional Imaging
任务驱动的 3D 介入成像
  • 批准号:
    10382316
  • 财政年份:
    2019
  • 资助金额:
    $ 36.84万
  • 项目类别:
Spectral-spatial filtering for efficient multi-material decomposition in x-ray CT
用于 X 射线 CT 中高效多材料分解的谱空间滤波
  • 批准号:
    9751293
  • 财政年份:
    2018
  • 资助金额:
    $ 36.84万
  • 项目类别:
Monitoring of fractures with internal fixators using weight-bearing quantitative cone beam CT
使用负重定量锥形束CT监测内固定器骨折
  • 批准号:
    9902426
  • 财政年份:
    2018
  • 资助金额:
    $ 36.84万
  • 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
  • 批准号:
    8926430
  • 财政年份:
    2014
  • 资助金额:
    $ 36.84万
  • 项目类别:
Task-driven dynamic beam modulation for high-performance,low-dose CT.
用于高性能、低剂量 CT 的任务驱动动态光束调制。
  • 批准号:
    8733325
  • 财政年份:
    2014
  • 资助金额:
    $ 36.84万
  • 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
  • 批准号:
    8588925
  • 财政年份:
    2013
  • 资助金额:
    $ 36.84万
  • 项目类别:
Incorporating Prior Knowledge of Surgical Devices in CBCT-Guided Interventions
将手术器械的先验知识纳入 CBCT 引导干预中
  • 批准号:
    8445513
  • 财政年份:
    2013
  • 资助金额:
    $ 36.84万
  • 项目类别:
An Integrated CT-based Image-Guided Neurosurgical System
基于 CT 的集成图像引导神经外科系统
  • 批准号:
    6886410
  • 财政年份:
    2005
  • 资助金额:
    $ 36.84万
  • 项目类别:
Interactive intraoperative imaging with cone beam CT
锥形束 CT 交互式术中成像
  • 批准号:
    7228457
  • 财政年份:
    2004
  • 资助金额:
    $ 36.84万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 36.84万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 36.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了