The impact of hypoxia on Staphylococcus aureus metabolism and virulence during osteomyelitis

骨髓炎期间缺氧对金黄色葡萄球菌代谢和毒力的影响

基本信息

  • 批准号:
    9901431
  • 负责人:
  • 金额:
    $ 37.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-10 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT Staphylococcus aureus is an important human pathogen, capable of causing life-threatening infections in a variety of host tissues. Osteomyelitis, an invasive and debilitating infection of bone, is one of the most common manifestations of staphylococcal disease. Indeed, osteomyelitis accounts for approximately 2-3 of every 1,000 admissions to pediatric hospitals in the United States, and complicates up to 25% of open fractures. Bone infections are notoriously refractory to treatment due to widespread antimicrobial resistance and pathogen-induced bone remodeling, which limits penetration of antibiotics into the infectious focus. S. aureus is by far the most common cause of musculoskeletal infection, yet the mechanisms by which staphylococci survive within and ultimately destroy bone are poorly understood. The overarching objective of this proposal is to understand how S. aureus regulates its virulence and metabolic programs to survive within bone during osteomyelitis. Bone, like most mammalian tissues, is inherently hypoxic. Moreover, maintenance of skeletal health requires constant bone turnover by resident bone-forming osteoblasts and bone-resorbing osteoclasts. These skeletal cells, in turn, require a specialized metabolism characterized by high rates of glucose uptake, which is expected to limit the carbon sources available to invading pathogens. In order to better understand how S. aureus thrives within this hypoxic and metabolically unique environment, we created a powerful murine model of osteomyelitis capable of precise quantification of both bacterial burdens and bone turnover. By applying transposon sequencing (TnSeq) to this osteomyelitis model, we identified >200 staphylococcal genes important for survival in bone. Importantly, bacterial responses to hypoxia were found to be critical determinants of survival during osteomyelitis, as hypoxic growth not only dictates the energy production strategies used by staphylococci, but also augments the production of quorum-dependent virulence factors that participate in bone destruction. Based on these preliminary data, we hypothesize that S. aureus survival in bone is facilitated by (a) quorum-regulated virulence factor expression in response to hypoxia, and (b) specific nutrient utilization programs that enable growth in the unique metabolic environment of bone. The proposed Aims will test this hypothesis to determine (i) the mechanism by which hypoxic growth triggers increased staphylococcal virulence, (ii) the metabolic pathways that support bacterial growth in bone, and (iii) the role of host hypoxic signaling pathways in antibacterial immunity and bone remodeling during osteomyelitis. Completion of these studies will elucidate microbial survival strategies during invasive infection, determine the impact of hypoxia on bacterial pathogenesis, and help to meet a critical need for new osteomyelitis therapeutics by defining putative antimicrobial and anti-virulence targets.
项目概要/摘要 金黄色葡萄球菌是一种重要的人类病原体,能够引起危及生命的感染 在多种宿主组织中。骨髓炎是一种侵袭性、使人衰弱的骨感染,是最常见的疾病之一 葡萄球菌病的常见表现。事实上,骨髓炎约占 2-3 在美国,每 1,000 名儿科医院住院患者中就有 25% 的患者因此而变得复杂化 骨折。由于广泛的抗菌药物耐药性,骨感染很难治疗 病原体引起的骨重塑,限制了抗生素渗透到感染灶中。 S。 金黄色葡萄球菌是迄今为止肌肉骨骼感染最常见的原因,但其机制 人们对葡萄球菌在骨骼中生存并最终破坏骨骼的了解甚少。总体目标 该提案旨在了解金黄色葡萄球菌如何调节其毒力和代谢程序以在其中生存 骨髓炎期间的骨头。 与大多数哺乳动物组织一样,骨骼本质上是缺氧的。此外,维持骨骼健康 需要常驻的骨形成成骨细胞和骨吸收破骨细胞进行持续的骨转换。这些 反过来,骨骼细胞需要一种以高葡萄糖摄取率为特征的特殊代谢,即 预计将限制入侵病原体可用的碳源。为了更好地理解S. 金黄色葡萄球菌在这种缺氧和代谢独特的环境中茁壮成长,我们创建了一个强大的小鼠模型 能够精确量化细菌负荷和骨转换的骨髓炎。通过申请 通过转座子测序 (TnSeq) 对此骨髓炎模型进行分析,我们鉴定出了超过 200 个葡萄球菌基因 对于骨骼的生存很重要。重要的是,细菌对缺氧的反应被发现至关重要 骨髓炎期间生存的决定因素,因为缺氧生长不仅决定能量产生 葡萄球菌使用的策略,但也增加了群体依赖性毒力因子的产生, 参与骨质破坏。根据这些初步数据,我们假设金黄色葡萄球菌在 (a) 缺氧时群体调节的毒力因子表达,以及 (b) 特异性 营养利用计划,使骨骼能够在独特的代谢环境中生长。拟议的 目标将测试这一假设,以确定(i)缺氧生长触发增加的机制 葡萄球菌毒力,(ii) 支持细菌在骨中生长的代谢途径,以及 (iii) 骨髓炎期间抗菌免疫和骨重塑中宿主缺氧信号通路。 这些研究的完成将阐明侵袭性感染期间微生物的生存策略,确定 缺氧对细菌发病机制的影响,有助于满足新骨髓炎的迫切需求 通过定义假定的抗菌和抗毒力目标来进行治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES E CASSAT其他文献

JAMES E CASSAT的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES E CASSAT', 18)}}的其他基金

Mechanisms of antibiotic failure during osteomyelitis
骨髓炎期间抗生素失效的机制
  • 批准号:
    10737292
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
Nikon Multiphoton (MP) Imaging System
尼康多光子 (MP) 成像系统
  • 批准号:
    10632942
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
Differential Inflammasome Regulation in the pathogenesis of S. aureus osteomyelitis
金黄色葡萄球菌骨髓炎发病机制中的差异炎症小体调节
  • 批准号:
    10388546
  • 财政年份:
    2021
  • 资助金额:
    $ 37.67万
  • 项目类别:
Differential Inflammasome Regulation in the pathogenesis of S. aureus osteomyelitis
金黄色葡萄球菌骨髓炎发病机制中的差异炎症小体调节
  • 批准号:
    10677704
  • 财政年份:
    2021
  • 资助金额:
    $ 37.67万
  • 项目类别:
Differential Inflammasome Regulation in the pathogenesis of S. aureus osteomyelitis
金黄色葡萄球菌骨髓炎发病机制中的差异炎症小体调节
  • 批准号:
    10493396
  • 财政年份:
    2021
  • 资助金额:
    $ 37.67万
  • 项目类别:
Defining the impact of host factors on the molecular architecture and bacterial physiology of Staphylococcus aureus abscesses
确定宿主因素对金黄色葡萄球菌脓肿分子结构和细菌生理学的影响
  • 批准号:
    9973597
  • 财政年份:
    2020
  • 资助金额:
    $ 37.67万
  • 项目类别:
Defining the impact of host factors on the molecular architecture and bacterial physiology of Staphylococcus aureus abscesses
确定宿主因素对金黄色葡萄球菌脓肿分子结构和细菌生理学的影响
  • 批准号:
    10356907
  • 财政年份:
    2020
  • 资助金额:
    $ 37.67万
  • 项目类别:
Defining the impact of host factors on the molecular architecture and bacterial physiology of Staphylococcus aureus abscesses
确定宿主因素对金黄色葡萄球菌脓肿分子结构和细菌生理学的影响
  • 批准号:
    10115595
  • 财政年份:
    2020
  • 资助金额:
    $ 37.67万
  • 项目类别:
Defining the impact of host factors on the molecular architecture and bacterial physiology of Staphylococcus aureus abscesses
确定宿主因素对金黄色葡萄球菌脓肿分子结构和细菌生理学的影响
  • 批准号:
    10565912
  • 财政年份:
    2020
  • 资助金额:
    $ 37.67万
  • 项目类别:
Host-pathogen interactions during osteomyelitis
骨髓炎期间宿主与病原体的相互作用
  • 批准号:
    9273893
  • 财政年份:
    2014
  • 资助金额:
    $ 37.67万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
    Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 37.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了