A modular, customizable sequencing system for simultaneous genotyping and transcript analysis in single cells
模块化、可定制的测序系统,用于在单细胞中同时进行基因分型和转录本分析
基本信息
- 批准号:9901478
- 负责人:
- 金额:$ 18.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllelesBar CodesBiological AssayCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexCustomDNADNA-Directed DNA PolymeraseDiseaseElementsEncapsulatedEnhancersEnsureFemaleGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenetic VariationGenomeGenomic DNAGenomicsGenotypeGoldHeterogeneityHourHuman GeneticsHybrid CellsHybridsIndividualMalignant NeoplasmsMeasuresMethodsMicrofluidicsMutagenesisMutationNatureOligonucleotidesOutputPopulationPopulation HeterogeneityPopulation SizesProcessProtocols documentationRNAReactionRegulatory ElementResolutionReverse TranscriptionScreening ResultSensitivity and SpecificitySomatic MutationSpecificitySurveysSystemTechnologyTestingTissuesTranscriptUntranslated RNAX Inactivationbasebiological systemscell typecostdesignfallsflexibilityhuman diseaseinnovationinnovative technologiesinterestmanufacturing processnovelsequencing platformsingle cell sequencingsingle cell technologysingle moleculesingle-cell RNA sequencingtargeted sequencingtranscriptometranscriptome sequencingtumor
项目摘要
Project Summary
Single cell sequencing has revolutionized the way in which we define cell types and understand tissues, and has
tremendous potential for analyzing the heterogeneity of complex tumors or large perturbation screens. At
present, however, this powerful technology has serious limitations, particularly in what cellular information
can be detected and analyzed. Current high-throughput microfluidics single cell RNA sequencing (scRNA-seq)
methods can conveniently process tens of thousands of cells but only capture the extreme 3’ ends of the most
abundant transcripts from each cell. The low sensitivity and partial transcript coverage hampers these
methods’ abilities to detect allele-specific or subtle perturbation effects, while also dramatically increasing the
per-cell sequencing cost. Moreover, no existing single-cell sequencing method can read DNA genotype and
RNA expression from the same cell, which is crucial to studying non-coding regulatory elements and somatic
rearrangements -- where the most genetic variation associated with cancer and human disease resides.
Here we propose to overcome these limitations by developing a flexible high throughput single-cell sequencing
system that (1) Can target many different regulatory DNA elements and transcripts simultaneously in the
same cell, (2) Is sensitive enough to measure subtle, allele-specific effects, (3) measures the effects of different
mutations across tens-of-thousands of cells in a single assay, and (4) is easily and rapidly adaptable for
application to any biological system with a heterogeneous cell population. We iteratively develop this
technology, ensuring that each step independently creates new capabilities that address current scRNA-Seq
limitations and enables allele specific expression analysis and perturbation screens of non-coding elements.
First, we will modify the the inDrop bead manufacturing process to make it flexible and rapidly customizable
so that one large batch of universal barcoded beads can be conveniently adapted to target many specific
transcript pools, SNP-containing portions of transcripts, and even genomic DNA, in just 8 hours.
Second, we test the sensitivity and allele-specificity of our new method in a predictably heterogeneous system:
random X inactivation in hybrid female (XX) cells. Using single-molecule RNA-FISH as a gold standard, we
will measure the sensitivity, specificity, and efficiency of our targeted scRNA-Seq approach.
Third, we enable simultaneous DNA genotyping and transcript quantification by adapting our custom beads
and reaction conditions for isothermal amplification of genomic DNA loci, simultaneous with RT of targeted
transcripts in the same cells.
Fourth, we will combine our approaches above in a proof-of-principle application to characterize enhancer
function using a CRISPR mutagenesis screen. CRISPR mutagenesis randomly creates different alleles in each
cell. We then use targeted sequencing of neighboring genes and DNA genotyping to evaluate the effect of each
allele on its target(s) in cis.
项目摘要
单细胞测序彻底改变了我们定义细胞类型和了解组织的方式,
分析复杂肿瘤或大扰动屏幕的异质性的巨大潜力。在
然而,目前,这种强大的技术有严重的局限性,特别是在什么样的蜂窝信息,
可以检测和分析。当前高通量微流体单细胞RNA测序(scRNA-seq)
方法可以方便地处理数万个细胞,但仅捕获大多数细胞的末端3'端。
每个细胞都有大量的转录本低灵敏度和部分转录覆盖阻碍了这些
方法检测等位基因特异性或细微扰动效应的能力,同时也显著提高了
每细胞测序成本。此外,没有现有的单细胞测序方法可以读取DNA基因型,
来自同一细胞的RNA表达,这对于研究非编码调控元件和体细胞生物学至关重要。
基因重排--与癌症和人类疾病相关的最多的基因变异所在。
在这里,我们建议通过开发灵活的高通量单细胞测序来克服这些限制。
系统,(1)可以同时靶向许多不同的调控DNA元件和转录本,
相同细胞,(2)足够灵敏以测量细微的等位基因特异性效应,(3)测量不同细胞的效应,
在一个单一的测定中,在成千上万的细胞中检测突变,以及(4)容易且快速地适用于
本发明还适用于具有异质细胞群的任何生物系统。我们反复开发这个
技术,确保每一步都独立地创造新的能力,解决当前的scRNA-Seq
限制,并且能够进行等位基因特异性表达分析和非编码元件的干扰筛选。
首先,我们将修改inDrop珠的制造过程,使其具有灵活性和可快速定制性
使得一大批通用条形码化珠可以方便地适用于靶向许多特定的
在短短8小时内,就可以完成转录物池、含SNP的转录物部分,甚至基因组DNA。
其次,我们在可预测的异质系统中测试了我们的新方法的灵敏度和等位基因特异性:
杂交雌性(XX)细胞中的随机X失活。使用单分子RNA-FISH作为金标准,我们
将测量我们靶向scRNA-Seq方法的灵敏度,特异性和效率。
第三,我们通过调整我们的定制珠粒,
以及用于基因组DNA基因座的等温扩增的反应条件,与靶向的
在相同的细胞中。
第四,我们将联合收割机结合我们的方法在一个证明的原则应用程序,以表征增强
使用CRISPR诱变筛选来鉴定其功能。CRISPR诱变在每个基因组中随机产生不同的等位基因。
cell.然后,我们使用相邻基因的靶向测序和DNA基因分型来评估每种方法的效果。
等位基因在其靶标上呈顺式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Garber其他文献
Manuel Garber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Garber', 18)}}的其他基金
Predictive drivers of new onset, relapse, and progression of human autoimmunity in skin
人类皮肤自身免疫新发、复发和进展的预测驱动因素
- 批准号:
10658149 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Cell-Cell Communications and Tissue Memory in Vitiligo
白癜风的细胞间通讯和组织记忆
- 批准号:
10703386 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别:
Cell-Cell Communications and Tissue Memory in Vitiligo
白癜风的细胞间通讯和组织记忆
- 批准号:
10404446 - 财政年份:2022
- 资助金额:
$ 18.22万 - 项目类别:
Predictive Modeling of the Functional and Phenotypic Impacts of Genetic Variants
遗传变异的功能和表型影响的预测模型
- 批准号:
10297478 - 财政年份:2021
- 资助金额:
$ 18.22万 - 项目类别:
Predictive Modeling of the Functional and Phenotypic Impacts of Genetic Variants
遗传变异的功能和表型影响的预测模型
- 批准号:
10626068 - 财政年份:2021
- 资助金额:
$ 18.22万 - 项目类别:
Predictive Modeling of the Functional and Phenotypic Impacts of Genetic Variants
遗传变异的功能和表型影响的预测模型
- 批准号:
10472610 - 财政年份:2021
- 资助金额:
$ 18.22万 - 项目类别:
Dissecting autoimmune cellular and molecular networks in vitiligo
剖析白癜风的自身免疫细胞和分子网络
- 批准号:
9565961 - 财政年份:2017
- 资助金额:
$ 18.22万 - 项目类别:
Dissecting autoimmune cellular and molecular networks in vitiligo
剖析白癜风的自身免疫细胞和分子网络
- 批准号:
9469066 - 财政年份:2017
- 资助金额:
$ 18.22万 - 项目类别:
Rules of gene expression modeled on human dendritic cell response to pathogens
模拟人类树突状细胞对病原体反应的基因表达规则
- 批准号:
8770761 - 财政年份:2015
- 资助金额:
$ 18.22万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 18.22万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 18.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




