Calmodulin Regulation of KCNQ1 Potassium Channels
KCNQ1 钾通道的钙调蛋白调节
基本信息
- 批准号:9907807
- 负责人:
- 金额:$ 5.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAffinityArrhythmiaBindingBinding SitesBiological AssayCalmodulinCardiacCardiac MyocytesChimera organismComplexCryoelectron MicroscopyCytoplasmCytoplasmic TailDataDisabled PersonsDrug TargetingElectrodesElectrophysiology (science)FamilyFluorescenceFluorescence Resonance Energy TransferFluorometryFunctional disorderGoalsHeartInheritedIon ChannelKineticsLeadLigandsLobeLong QT SyndromeMethodsModelingMolecularMutagenesisMutationOpticsPatientsPharmacologyPhosphatidylinositol 4,5-DiphosphatePotassiumPotassium ChannelProcessProtein EngineeringProtein IsoformsRegulationRomano-Ward SyndromeStimulusStructureTechniquesTestingTherapeuticTransmembrane DomainVoltage-Gated Potassium Channelbasebiophysical techniquesinsightmutantnovelpatch clampprecision medicineresponsesensorsudden cardiac deathtooltraffickingvoltagevoltage clamp
项目摘要
PROJECT SUMMARY
In the heart, KCNQ1 voltage-gated potassium channels form the alpha-subunits for the slow delayed rectifier
potassium current, a repolarizing current critical for cardiac action potential termination. Calmodulin (CaM) is an
obligatory KCNQ1 auxiliary subunit which binds the KCNQ1 cytoplasmic domain and regulates normal KCNQ1
trafficking and function. Inherited mutations in KCNQ1 (>600) and CaM lead to congenital long QT syndrome
(LQTS), which predisposes patients to arrhythmias and sudden cardiac death. Little is known regarding the
specific KCNQ1 mutations or the molecular mechanism underlying CaM dysregulation of KCNQ1 to cause
LQTS. Conversely, because CaM binds multiple ion channel targets in cardiomyocytes, it is unclear whether
CaM mutations cause LQTS by inducing KCNQ1 dysfunction. This study’s overall goal is to elucidate
mechanisms of CaM regulation of KCNQ1 and identify arrhythmogenic mutations in KCNQ1 and CaM which
cause LQTS specifically through CaM dysregulation. Until recently, the lack of KCNQ1 structural and gating
mechanism insights has hindered mechanistic studies of CaM regulation of KCNQ1. However, recent
breakthroughs in both functional and structural studies of KCNQ1 revealed novel findings which may overcome
this barrier. This proposal is motivated by three novel CaM regulatory hypotheses derived from these studies:
(1) CaM regulates KCNQ1 through simultaneous interactions with the KCNQ1 cytoplasmic and transmembrane
domains, (2) CaM exerts selective regulation on distinct KCNQ1 open states, and (3) CaM regulation requires
concurrent ATP binding. Presently, there is little functional data to support these hypotheses as genuine gating
mechanisms. This proposal plans to investigate these novel CaM regulatory hypotheses with three aims. Aim 1
will characterize the functional impact of disrupting CaM simultaneous interactions with the transmembrane and
cytoplasmic domains with systematic mutagenesis, electrophysiological recordings, and optical assays. Aim 2
will utilize a biophysical approach to probe the mechanistic hypothesis that CaM alters KCNQ1 current through
selective regulation of distinct KCNQ1 open states with mutagenesis and protein engineering methods. Aim 3
will expand the scope to multi-ligand KCNQ1 regulation. Aim 3 will answer whether CaM regulation of KCNQ1
requires concurrent ATP binding to the KCNQ1 cytoplasmic domain with combined electrophysiology and
fluorescence techniques. Results from this study will functionally establish novel mechanisms of CaM regulation
of KCNQ1, identify which and how mutations in KCNQ1 and CaM lead to LQTS due to CaM dysregulation. These
findings will pave the way for a precision medicine approach to congenital LQTS and may reveal therapeutic
approaches against LQTS through targeting these novel CaM regulatory mechanisms.
项目概要
在心脏中,KCNQ1 电压门控钾通道形成缓慢延迟整流器的 α 亚基
钾电流,一种对心脏动作电位终止至关重要的复极电流。 Calmodulin (CaM) is an
必需的 KCNQ1 辅助亚基,结合 KCNQ1 胞质结构域并调节正常的 KCNQ1
trafficking and function. KCNQ1 (>600) 和 CaM 的遗传性突变导致先天性长 QT 综合征
(LQTS),使患者容易出现心律失常和心源性猝死。 Little is known regarding the
特定的 KCNQ1 突变或 KCNQ1 CaM 失调的分子机制导致
LQTS.相反,由于 CaM 结合心肌细胞中的多个离子通道靶标,因此尚不清楚是否
CaM 突变通过诱导 KCNQ1 功能障碍导致 LQTS。 This study’s overall goal is to elucidate
CaM 对 KCNQ1 的调节机制,并鉴定 KCNQ1 和 CaM 中的致心律失常突变,这些突变
特别是通过 CaM 失调引起 LQTS。直到最近,KCNQ1 结构和门控的缺失
机制的见解阻碍了 CaM 对 KCNQ1 调节的机制研究。然而,最近
KCNQ1 功能和结构研究的突破揭示了可能克服的新发现
this barrier.该提案的动机是源自这些研究的三个新颖的 CaM 监管假设:
(1) CaM 通过与 KCNQ1 胞质和跨膜同时相互作用来调节 KCNQ1
域,(2) CaM 对不同的 KCNQ1 开放状态进行选择性调节,(3) CaM 调节需要
concurrent ATP binding.目前,几乎没有功能数据支持这些假设作为真正的门控
机制。该提案计划研究这些新颖的 CaM 监管假设,具有三个目标。目标1
将表征破坏 CaM 与跨膜同时相互作用的功能影响,
具有系统诱变、电生理记录和光学测定的细胞质结构域。 Aim 2
将利用生物物理方法来探讨 CaM 通过以下方式改变 KCNQ1 电流的机制假设
通过诱变和蛋白质工程方法选择性调节不同的 KCNQ1 开放状态。目标 3
将扩大 KCNQ1 多配体监管范围。目标3将回答CaM是否对KCNQ1进行调节
需要结合电生理学和结合的 ATP 与 KCNQ1 细胞质结构域同时结合
fluorescence techniques.这项研究的结果将在功能上建立 CaM 调节的新机制
KCNQ1,确定 KCNQ1 和 CaM 中的哪些突变以及如何因 CaM 失调而导致 LQTS。这些
研究结果将为先天性 LQTS 的精准医学方法铺平道路,并可能揭示治疗方法
通过针对这些新颖的 CaM 调节机制来对抗 LQTS。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po wei Kang其他文献
Po wei Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po wei Kang', 18)}}的其他基金
Calmodulin Regulation of KCNQ1 Potassium Channels
KCNQ1 钾通道的钙调蛋白调节
- 批准号:
10364597 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
Calmodulin Regulation of KCNQ1 Potassium Channels
KCNQ1 钾通道的钙调蛋白调节
- 批准号:
10396680 - 财政年份:2020
- 资助金额:
$ 5.05万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 5.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别:
Operating Grants