Calmodulin Regulation of KCNQ1 Potassium Channels
KCNQ1 钾通道的钙调蛋白调节
基本信息
- 批准号:10396680
- 负责人:
- 金额:$ 3.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAffinityArrhythmiaBindingBinding SitesBiological AssayCalmodulinCardiacCardiac MyocytesChimera organismComplexCryoelectron MicroscopyCytoplasmCytoplasmic TailDataDisabled PersonsDrug TargetingElectrodesElectrophysiology (science)FamilyFluorescenceFluorescence Resonance Energy TransferFluorometryFunctional disorderGoalsHeartInheritedIon ChannelKineticsLeadLigandsLobeLong QT SyndromeMethodsModelingMolecularMutagenesisMutationOpticsPatientsPharmacologyPhosphatidylinositol 4,5-DiphosphatePotassiumPotassium ChannelProcessProtein EngineeringProtein IsoformsRegulationRomano-Ward SyndromeStimulusStructureTechniquesTestingTherapeuticTransmembrane DomainVoltage-Gated Potassium Channelbasebiophysical techniquesinsightmutantnovelpatch clampprecision medicineresponsesensorsudden cardiac deathtooltraffickingvoltagevoltage clamp
项目摘要
PROJECT SUMMARY
In the heart, KCNQ1 voltage-gated potassium channels form the alpha-subunits for the slow delayed rectifier
potassium current, a repolarizing current critical for cardiac action potential termination. Calmodulin (CaM) is an
obligatory KCNQ1 auxiliary subunit which binds the KCNQ1 cytoplasmic domain and regulates normal KCNQ1
trafficking and function. Inherited mutations in KCNQ1 (>600) and CaM lead to congenital long QT syndrome
(LQTS), which predisposes patients to arrhythmias and sudden cardiac death. Little is known regarding the
specific KCNQ1 mutations or the molecular mechanism underlying CaM dysregulation of KCNQ1 to cause
LQTS. Conversely, because CaM binds multiple ion channel targets in cardiomyocytes, it is unclear whether
CaM mutations cause LQTS by inducing KCNQ1 dysfunction. This study’s overall goal is to elucidate
mechanisms of CaM regulation of KCNQ1 and identify arrhythmogenic mutations in KCNQ1 and CaM which
cause LQTS specifically through CaM dysregulation. Until recently, the lack of KCNQ1 structural and gating
mechanism insights has hindered mechanistic studies of CaM regulation of KCNQ1. However, recent
breakthroughs in both functional and structural studies of KCNQ1 revealed novel findings which may overcome
this barrier. This proposal is motivated by three novel CaM regulatory hypotheses derived from these studies:
(1) CaM regulates KCNQ1 through simultaneous interactions with the KCNQ1 cytoplasmic and transmembrane
domains, (2) CaM exerts selective regulation on distinct KCNQ1 open states, and (3) CaM regulation requires
concurrent ATP binding. Presently, there is little functional data to support these hypotheses as genuine gating
mechanisms. This proposal plans to investigate these novel CaM regulatory hypotheses with three aims. Aim 1
will characterize the functional impact of disrupting CaM simultaneous interactions with the transmembrane and
cytoplasmic domains with systematic mutagenesis, electrophysiological recordings, and optical assays. Aim 2
will utilize a biophysical approach to probe the mechanistic hypothesis that CaM alters KCNQ1 current through
selective regulation of distinct KCNQ1 open states with mutagenesis and protein engineering methods. Aim 3
will expand the scope to multi-ligand KCNQ1 regulation. Aim 3 will answer whether CaM regulation of KCNQ1
requires concurrent ATP binding to the KCNQ1 cytoplasmic domain with combined electrophysiology and
fluorescence techniques. Results from this study will functionally establish novel mechanisms of CaM regulation
of KCNQ1, identify which and how mutations in KCNQ1 and CaM lead to LQTS due to CaM dysregulation. These
findings will pave the way for a precision medicine approach to congenital LQTS and may reveal therapeutic
approaches against LQTS through targeting these novel CaM regulatory mechanisms.
项目摘要
在心脏中,KCNQ1电压门控钾通道形成缓慢延迟整流器的α亚单位
钾电流,一种对心脏动作电位终止至关重要的复极化电流。钙调素(CaM)是一种
结合KCNQ1胞质结构域并调节正常KCNQ1的专性KCNQ1辅助亚基
贩运和功能。KCNQ1(>600)和CaM的遗传突变导致先天性长QT综合征
(LQTS),这使患者容易出现心律失常和心源性猝死。关于这一点,我们知之甚少。
特定的KCNQ1突变或KCNQ1的CaM失调引起的分子机制
LQTS。相反,由于钙调素在心肌细胞中结合多种离子通道靶点,
CaM突变通过诱导KCNQ1功能障碍引起LQTS。本研究的总体目标是阐明
CaM调节KCNQ1的机制,并确定KCNQ1和CaM中的致突变突变,
特别是通过钙调素失调引起LQTS。直到最近,KCNQ1结构和门控的缺乏
机制的见解阻碍了CaM调节KCNQ1的机制研究。但最近的
KCNQ1功能和结构研究的突破揭示了新的发现,
这个屏障。这一提议的动机是来自这些研究的三个新的钙调素调节假说:
(1)CaM通过与KCNQ1的胞质和跨膜相互作用调节KCNQ1
结构域,(2)CaM对不同的KCNQ1开放状态进行选择性调节,(3)CaM调节需要
同时ATP结合。目前,几乎没有功能数据支持这些假设为真正的门控
机制等该提案计划调查这些新的钙调素调控假说有三个目标。要求1
将表征破坏钙调素与跨膜蛋白的同时相互作用的功能影响,
用系统诱变、电生理学记录和光学测定来研究细胞质结构域。目的2
将利用生物物理学的方法来探讨CaM改变KCNQ 1电流的机制假说,
用诱变和蛋白质工程方法选择性调节不同的KCNQ1开放状态。目标3
将范围扩大到多配体KCNQ1调节。目标3将回答CaM是否调节KCNQ1
需要同时结合ATP与KCNQ1胞质结构域,并结合电生理学,
荧光技术本研究的结果将在功能上建立新的钙调素调节机制
的KCNQ1,确定KCNQ1和CaM的突变以及如何导致LQTS由于CaM失调。这些
研究结果将为先天性LQTS的精确医学方法铺平道路,并可能揭示治疗方法。
通过靶向这些新的CaM调节机制来对抗LQTS的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po wei Kang其他文献
Po wei Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po wei Kang', 18)}}的其他基金
Calmodulin Regulation of KCNQ1 Potassium Channels
KCNQ1 钾通道的钙调蛋白调节
- 批准号:
10364597 - 财政年份:2020
- 资助金额:
$ 3.42万 - 项目类别:
Calmodulin Regulation of KCNQ1 Potassium Channels
KCNQ1 钾通道的钙调蛋白调节
- 批准号:
9907807 - 财政年份:2020
- 资助金额:
$ 3.42万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 3.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 3.42万 - 项目类别:
Standard Grant