Measuring the individual: Personalized latent variable models from ecological momentary assessments
衡量个体:来自生态瞬时评估的个性化潜变量模型
基本信息
- 批准号:9906952
- 负责人:
- 金额:$ 22.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-04 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAnhedoniaBehaviorBehavioralBehavioral ModelClinicalCollaborationsDataData CollectionDepressed moodDetectionDevicesEcological momentary assessmentEmotionalEnsureEventFactor AnalysisFatigueFeelingFeeling hopelessFundingHappinessHeterogeneityIndividualLeadLifeMeasurementMeasuresMental DepressionMental HealthMethodsModelingModificationMonte Carlo MethodNormalcyPatient Self-ReportPatternPerformancePersonsProcessPropertyPsychologistResearch PersonnelSamplingScienceScientistSeriesSourceStressStructural ModelsSymptomsTechniquesTimeWorkbehavior observationclinically relevantdepressive symptomsdigitalexperienceinterestpersonalized approachpersonalized medicinephysical processpreventpsychologictooltreatment planning
项目摘要
PROJECT SUMMARY
With the increasing availability of ecological momentary assessments (EMA) such as daily dairy and
experience sampling measurements, behavioral scientists are better able to investigate the within-person
dynamic patterns (i.e., relations among variables across time) underlying symptoms, behaviors, and life
events. One prominent challenge in this endeavor is the inherent heterogeneity in individual mental health
processes. Others have demonstrated that this heterogeneity requires personalized measurement models to
accurately assess constructs of interest. By measurement model, we mean the pattern of how observed
variables relate to a latent construct. As an example, depression can be thought of as a latent construct that
psychologists often seek to measure. Individuals may differ with regards to which (observed) symptoms relate
to their overall (latent) depression levels at a given time point. For one person, the symptoms of sadness,
feelings of hopelessness, and irritability may be the best measures of depression over time whereas for
another, perhaps sadness, anhedonia, and fatigue are the symptoms that indicate depression.Allowing
individuals to have personalized assessments will enable the field to get even closer to personalized treatment
plans by better quantifying these somewhat abstract constructs.The current standard is to force all individuals
to have the same measurement model, but the field is quickly moving towards adopting personalized
measurement models for assessments. Critically, the available methods have a number of issues that prevent
reliable personalized measurement models. First, some approaches (such as simply using observed variables)
ignore the reality of measurement errors. This causes bias in the effects among latent constructs of interest
and can lead to inaccurate inferences regarding anindividuals' process. Second, the number of observations
obtained for a given individual is often too small to arrive at person-specific measurement models. Third, the
current methods require the assumption of multivariate normality to be met; this is typically not seen in many
forms of ecological momentary assessment data. Fourth, many available approaches for arriving at individual-
level models do not perform well when the model is misspecified (i.e., the pattern of relations among observed
symptoms and latent constructs is incorrect). This prevents a considerable hurdle when attempting to arrive at
model structures in an exploratory manner where by definition the correct model is unknown in the
beginning.Our project, if funded, would provide researchers with an easy-to-use tool for arriving at
personalized measurement models. This can be achieved by building an exploratory approach within a well-
understood estimation approach that has a number of desirable properties. Measurement errors would be
accounted for, the method will work well even when the number of time points (observations) is less than the
number of variables, multivariate normality will not be a required assumption, and misspecifications will not
influence the identification of a reliable personalized measurement model.
项目总结
随着生态瞬时评估(EMA)的可用性不断增加,如每日乳制品和
通过抽样测量,行为科学家能够更好地研究人的内部
动态模式(即变量之间随时间的关系)是潜在的症状、行为和生命
事件。这一努力中的一个突出挑战是个体心理健康的内在异质性
流程。其他人已经证明,这种异质性需要个性化的测量模型来
准确评估感兴趣的构造。所谓测量模型,我们指的是如何观察到的模式
变量与潜在的结构有关。例如,抑郁可以被认为是一种潜在的结构,
心理学家经常试图测量。每个人可能在哪些(观察到的)症状方面有所不同
他们在给定时间点的总体(潜在)抑郁水平。对于一个人来说,悲伤的症状,
随着时间的推移,无望感和易怒可能是衡量抑郁的最好指标,而对于
另一种可能是悲伤、快感减退和疲劳是抑郁症的症状。
个人进行个性化评估将使现场更接近个性化治疗
通过更好地量化这些有点抽象的结构来制定计划。目前的标准是迫使所有个人
拥有相同的测量模式,但该领域正在迅速转向采用个性化
评估的测量模型。关键的是,可用的方法存在许多问题,这些问题会阻止
可靠的个性化测量模型。首先,一些方法(例如简单地使用观察变量)
忽略测量误差的实际情况。这导致了潜在的兴趣结构之间的影响存在偏差
并可能导致对个人过程的不准确推断。第二,观察的次数
对于特定个人的测量结果往往太小,无法得出特定于个人的测量模型。第三,
目前的方法需要满足多元正态分布的假设;这在许多情况下是不常见的
生态瞬时评估数据的形式。第四,许多可用的方法可以达到个人-
当模型被错误指定时(即,观察到的关系的模式),水平模型表现不佳
症状和潜在结构不正确)。这就避免了在试图达到
模型结构,其中根据定义,正确的模型在
我们的项目,如果得到资助,将为研究人员提供一个简单易用的工具来达到
个性化测量模型。这可以通过在油井内建立一种探索性方法来实现-
了解具有许多所需属性的评估方法。测量误差将是
考虑到,即使在时间点(观测值)少于
变量数量、多元正态不是必需的假设,错误的规范也不是必需的假设
影响可靠的个性化测量模型的识别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Bollen其他文献
Kenneth Bollen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
- 批准号:
10825287 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
DNAメチル化障害とその量的形質遺伝子座を用いたanhedonia/dysphoria問題への接近
利用 DNA 甲基化障碍及其数量性状基因座解决快感缺乏/烦躁不安问题
- 批准号:
24K02698 - 财政年份:2024
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
- 批准号:
10598974 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Reward Responsiveness as a Prevention Target in Youth At Risk for Anhedonia
将奖励反应作为快感缺失风险青少年的预防目标
- 批准号:
10722481 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Determining the role of social reward learning in social anhedonia in first-episode psychosis using motivational interviewing as a probe in a perturbation-based neuroimaging approach
使用动机访谈作为基于扰动的神经影像学方法的探索,确定社交奖励学习在首发精神病社交快感缺乏中的作用
- 批准号:
10594181 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Mapping links between real-world diversity, positive emotion, and neural dynamics in anhedonia
映射现实世界多样性、积极情绪和快感缺失的神经动力学之间的联系
- 批准号:
10716446 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Neural Circuit-Specific Mechanisms of Ketamine's Effect on Anhedonia and Anxiety in Depression Using Ultra-High Field 7-Tesla MRI
使用超高场 7 特斯拉 MRI 研究氯胺酮对抑郁症快感缺乏和焦虑影响的神经回路特异性机制
- 批准号:
10713827 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Neuroinflammation as a Mechanism Linking Early Life Stress, Altered Functional Connectivity, and Anhedonia in Major Depression
神经炎症是一种与早期生活压力、功能连接改变和重度抑郁症快感缺失相关的机制
- 批准号:
10606174 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Neurophysiological mechanisms of anhedonia and cognitive control deficits in trauma-exposed people completing vibroacoustically augmented breath focused mindfulness
创伤暴露人群完成振动声学增强呼吸聚焦正念的快感缺失和认知控制缺陷的神经生理机制
- 批准号:
10752342 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Mechanisms of Depression and Anhedonia in Adolescents: Linking Sleep Duration and Timing to Reward- and Stress-Related Brain Function
青少年抑郁和快感缺失的机制:将睡眠持续时间和时间与奖励和压力相关的大脑功能联系起来
- 批准号:
10364517 - 财政年份:2022
- 资助金额:
$ 22.74万 - 项目类别:














{{item.name}}会员




