Stem Cell-based Human Placenta-on-a-Chip Using 3D Bioprinting
使用 3D 生物打印技术开发基于干细胞的人类胎盘芯片
基本信息
- 批准号:9906693
- 负责人:
- 金额:$ 19.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnimal ModelBasal laminaBindingBiocompatible MaterialsBiomedical EngineeringBiomimeticsBlood CirculationBlood capillariesBlood flowCarbon DioxideCell LineCell SurvivalCell physiologyCellsCellular StructuresCharacteristicsChoriocarcinomaChorionic villiCoculture TechniquesComplexConnective TissueDataDevelopmentDiscipline of obstetricsDiseaseEncapsulatedEndocrineEndothelial CellsEndotheliumEngineeringEnvironmentEvaluationExposure toFailureFetal Growth RetardationFetusFibroblastsFunctional disorderGelatinGeneticGenetic TranscriptionGlucoseHormonesHumanHydrogelsIn VitroLeadLongevityMaternal PhysiologyMeasurementMeasuresMediatingMetabolicMetabolismMethacrylatesMethodsMicrofluidicsModelingNon-MalignantNutrientOpticsOrganOxygenPerfusionPhysiologicalPlacentaPlacental BiologyPlacental HormonesPlacentationPlayPopulationPre-EclampsiaPregnancyPregnancy ComplicationsPregnancy MaintenancePrintingProcessProductionPublic HealthRNAReproductive BiologyReproductive MedicineRoleSideSignal TransductionSignaling MoleculeStem cellsStromal CellsStructureSyncytiotrophoblastSystemTechnologyTimeTissue ViabilityTissuesUmbilical veinVascular blood supplyVillousWaste ProductsWorkbasebioprintingcancer cellcell typeclinically significantcytotrophoblastdesignex vivo perfusionextracellularfetalfetal bloodin vitro Modelmonolayernovelscaffoldthree-dimensional modelingtranscriptomicstrophoblastwasting
项目摘要
As the interface between the maternal and fetal blood supplies, the placenta transports nutrients and oxygen to, and metabolic waste products and carbon dioxide away from, the fetus; it also produces hormones necessary for establishment and maintenance of pregnancy. To carry out these diverse functions, the placenta is comprised of functional units, called chorionic villi, which consist of loops of fetal capillaries surrounded by stromal cells, followed by cytotrophoblast, with the whole encased in a syncytiotrophoblast monolayer. As the placenta matures, the number of stromal cells and cytotrophoblast decrease significantly, resulting, at term, in an exchange interface composed primarily of fetal capillaries adjacent to the syncytiotrophoblast monolayer. Abnormalities in placental function are associated with common and clinically significant complications of pregnancy, including preeclampsia and fetal growth restriction. Given marked differences in placental structure and function between humans and experimentally tractable animal models, and the complex microarchitecture of the feto-maternal interface, there is a pressing need for in vitro models that can be used to experimentally probe the function of the human placenta. Traditional systems, such as choriocarcinoma cell lines, primary cytotrophoblast, placental explant cultures, and ex vivo perfusion of placental tissue, have significant limitations related to use of malignant cells to model non-malignant cells, failure to recreate the complex 3D relationships among different cell types, and/or short experimental life-span. Recently, placenta-on-a-chip approaches have been applied, but existing implementations lack the ability to recapitulate the native microenvironment, anatomical structure, and long-term function needed for detailed mechanistic studies.
We will address these challenges by engineering a novel human placenta-on-a-chip in a microfluidic platform, which will recapitulate human placental microstructure and function. By using a rapid 3D bioprinting method, we are able to better replicate the intricate microarchitecture of the native maternal-fetal placental interface at term and incorporate each of the key human placental cell types, including placental microvascular endothelial cells, and primary cytotrophoblast or human trophoblast stem cells. The work will be accomplished in two aims by: (1) building the 3D placenta-on-a-chip and confirming the spatial placement, viability, and identity of the component cell types, and (2) performing detailed evaluation of our platform as a biomimetic model of placental function, including assessment of barrier formation, and the effects of varying glucose concentration and oxygen tension on biomolecular transport, production of placental hormones, and intracellular and extracellular RNA expression. Where appropriate, these results will be compared to those obtained from placental explants cultured in the same conditions. This work will produce a validated novel 3D bioprinted placental model that can be used to reveal the mechanisms of placental function and dysfunction in normal and complicated pregnancies.
作为母体和胎儿血液供应的接口,胎盘将营养物质和氧气输送到胎儿,并将代谢废物和二氧化碳排出胎儿;它还会产生建立和维持妊娠所需的激素。为了执行这些不同的功能,胎盘由被称为绒毛的功能单元组成,绒毛由被基质细胞包围的胎儿毛细血管环组成,随后是细胞滋养层,整个包裹在合体滋养层单层中。随着胎盘的成熟,基质细胞和细胞滋养层的数量显著减少,导致足月胎儿毛细血管与合体滋养层单层相邻的交换界面。胎盘功能异常与常见和临床上重要的妊娠并发症有关,包括先兆子痫和胎儿生长受限。鉴于人类和实验上易于处理的动物模型在胎盘结构和功能上的显著差异,以及胎儿-母体界面的复杂微结构,迫切需要能够用于实验探索人类胎盘功能的体外模型。传统的系统,如绒毛膜癌细胞系、原代细胞滋养层细胞、胎盘组织外植体培养和胎盘组织体外灌流,在使用恶性细胞来模拟非恶性细胞、未能重建不同细胞类型之间的复杂三维关系和/或实验寿命短等方面存在显著限制。最近,芯片上胎盘的方法得到了应用,但现有的方法缺乏概括详细机制研究所需的自然微环境、解剖结构和长期功能的能力。
我们将通过在微流控平台中设计一种新型的人类胎盘芯片来应对这些挑战,这将概括人类胎盘的微结构和功能。通过使用快速3D生物打印方法,我们能够更好地复制足月自然母胎胎盘界面复杂的微结构,并整合每一种关键的人类胎盘细胞类型,包括胎盘微血管内皮细胞和原代细胞滋养层细胞或人类滋养层干细胞。这项工作将通过两个目标完成:(1)建立芯片上的3D胎盘,并确认组成细胞类型的空间位置、生存能力和身份,以及(2)对我们的平台作为胎盘功能的仿生模型进行详细评估,包括评估屏障的形成,以及不同的葡萄糖浓度和氧分压对生物分子运输、胎盘激素产生以及细胞内和细胞外RNA表达的影响。在适当的情况下,这些结果将与在相同条件下培养的胎盘外植体的结果进行比较。这项工作将产生一种经过验证的新型3D生物打印胎盘模型,可以用来揭示正常和复杂妊娠中胎盘功能和功能障碍的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOCHEN CHEN其他文献
SHAOCHEN CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOCHEN CHEN', 18)}}的其他基金
Pre-clinical validation of 3D-printed nerve conduits for pediatric peripheral nerve repair
3D 打印神经导管用于儿科周围神经修复的临床前验证
- 批准号:
10672031 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10654014 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10508956 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10180921 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10059051 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10414977 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10740924 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10524187 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10679020 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10351191 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.69万 - 项目类别:
Research Grant