Stem Cell-based Human Placenta-on-a-Chip Using 3D Bioprinting
使用 3D 生物打印技术开发基于干细胞的人类胎盘芯片
基本信息
- 批准号:9906693
- 负责人:
- 金额:$ 19.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnimal ModelBasal laminaBindingBiocompatible MaterialsBiomedical EngineeringBiomimeticsBlood CirculationBlood capillariesBlood flowCarbon DioxideCell LineCell SurvivalCell physiologyCellsCellular StructuresCharacteristicsChoriocarcinomaChorionic villiCoculture TechniquesComplexConnective TissueDataDevelopmentDiscipline of obstetricsDiseaseEncapsulatedEndocrineEndothelial CellsEndotheliumEngineeringEnvironmentEvaluationExposure toFailureFetal Growth RetardationFetusFibroblastsFunctional disorderGelatinGeneticGenetic TranscriptionGlucoseHormonesHumanHydrogelsIn VitroLeadLongevityMaternal PhysiologyMeasurementMeasuresMediatingMetabolicMetabolismMethacrylatesMethodsMicrofluidicsModelingNon-MalignantNutrientOpticsOrganOxygenPerfusionPhysiologicalPlacentaPlacental BiologyPlacental HormonesPlacentationPlayPopulationPre-EclampsiaPregnancyPregnancy ComplicationsPregnancy MaintenancePrintingProcessProductionPublic HealthRNAReproductive BiologyReproductive MedicineRoleSideSignal TransductionSignaling MoleculeStem cellsStromal CellsStructureSyncytiotrophoblastSystemTechnologyTimeTissue ViabilityTissuesUmbilical veinVascular blood supplyVillousWaste ProductsWorkbasebioprintingcancer cellcell typeclinically significantcytotrophoblastdesignex vivo perfusionextracellularfetalfetal bloodin vitro Modelmonolayernovelscaffoldthree-dimensional modelingtranscriptomicstrophoblastwasting
项目摘要
As the interface between the maternal and fetal blood supplies, the placenta transports nutrients and oxygen to, and metabolic waste products and carbon dioxide away from, the fetus; it also produces hormones necessary for establishment and maintenance of pregnancy. To carry out these diverse functions, the placenta is comprised of functional units, called chorionic villi, which consist of loops of fetal capillaries surrounded by stromal cells, followed by cytotrophoblast, with the whole encased in a syncytiotrophoblast monolayer. As the placenta matures, the number of stromal cells and cytotrophoblast decrease significantly, resulting, at term, in an exchange interface composed primarily of fetal capillaries adjacent to the syncytiotrophoblast monolayer. Abnormalities in placental function are associated with common and clinically significant complications of pregnancy, including preeclampsia and fetal growth restriction. Given marked differences in placental structure and function between humans and experimentally tractable animal models, and the complex microarchitecture of the feto-maternal interface, there is a pressing need for in vitro models that can be used to experimentally probe the function of the human placenta. Traditional systems, such as choriocarcinoma cell lines, primary cytotrophoblast, placental explant cultures, and ex vivo perfusion of placental tissue, have significant limitations related to use of malignant cells to model non-malignant cells, failure to recreate the complex 3D relationships among different cell types, and/or short experimental life-span. Recently, placenta-on-a-chip approaches have been applied, but existing implementations lack the ability to recapitulate the native microenvironment, anatomical structure, and long-term function needed for detailed mechanistic studies.
We will address these challenges by engineering a novel human placenta-on-a-chip in a microfluidic platform, which will recapitulate human placental microstructure and function. By using a rapid 3D bioprinting method, we are able to better replicate the intricate microarchitecture of the native maternal-fetal placental interface at term and incorporate each of the key human placental cell types, including placental microvascular endothelial cells, and primary cytotrophoblast or human trophoblast stem cells. The work will be accomplished in two aims by: (1) building the 3D placenta-on-a-chip and confirming the spatial placement, viability, and identity of the component cell types, and (2) performing detailed evaluation of our platform as a biomimetic model of placental function, including assessment of barrier formation, and the effects of varying glucose concentration and oxygen tension on biomolecular transport, production of placental hormones, and intracellular and extracellular RNA expression. Where appropriate, these results will be compared to those obtained from placental explants cultured in the same conditions. This work will produce a validated novel 3D bioprinted placental model that can be used to reveal the mechanisms of placental function and dysfunction in normal and complicated pregnancies.
随着母体血液和胎儿血液供应之间的界面,胎盘将营养和氧气运输到胎儿,代谢废物产物和二氧化碳。它还产生建立和维持怀孕所需的激素。为了执行这些多样化的功能,胎盘由功能单位组成,称为绒毛膜绒毛,由胎儿毛细血管环组成,周围环绕着基质细胞,然后由细胞增多粒细胞包含,整个都包含在同叶tophiottiottiottiottiottiotophophophophophophophophermophophastophast上。随着胎盘的成熟,基质细胞的数量和细胞增多质细胞的数量显着减少,在期间,在交换界面中,主要由胎儿毛细血管组成的交换界面,主要由胎儿毛细血管组成。胎盘功能异常与妊娠的常见和临床显着并发症有关,包括先兆子痫和胎儿生长限制。鉴于人类与实验性动物模型之间的胎盘结构和功能有明显的差异,以及feto-ertalnal界面的复杂微体系结构,迫切需要体外模型,可用于实验探测人胎盘的功能。传统系统,例如绒毛膜瘤细胞系,原发性细胞增生细胞,胎盘外植体培养物以及胎盘组织的体外灌注,具有与使用恶性细胞对非恶性细胞建模,未能在不同的细胞类型之间恢复复杂的3D关系以及/或短实验性生命的复杂3D关系的显着局限性。最近,已经采用了胎盘芯片方法,但是现有的实现缺乏概括天然微环境,解剖结构以及详细机械研究所需的长期功能的能力。
我们将通过在微流体平台上设计新型的人体胎盘芯片来解决这些挑战,该平台将概括人胎盘微观结构和功能。通过使用快速的3D生物打印方法,我们能够更好地复制本天然母亲胎盘胎盘界面的复杂微体系结构,并结合了每种关键的人胎盘细胞类型,包括胎盘微血管内皮细胞和原发性细胞质细胞肥料或人滋养细胞或人类滋养员细胞。 The work will be accomplished in two aims by: (1) building the 3D placenta-on-a-chip and confirming the spatial placement, viability, and identity of the component cell types, and (2) performing detailed evaluation of our platform as a biomimetic model of placental function, including assessment of barrier formation, and the effects of varying glucose concentration and oxygen tension on biomolecular transport, production of placental激素,细胞内和细胞外RNA表达。在适当的情况下,将将这些结果与在相同条件下培养的胎盘外植体获得的结果进行比较。这项工作将产生经过验证的新型3D生物打印胎盘模型,可用于揭示正常和复杂妊娠中胎盘功能和功能障碍的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOCHEN CHEN其他文献
SHAOCHEN CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOCHEN CHEN', 18)}}的其他基金
Pre-clinical validation of 3D-printed nerve conduits for pediatric peripheral nerve repair
3D 打印神经导管用于儿科周围神经修复的临床前验证
- 批准号:
10672031 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10654014 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10508956 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10180921 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10059051 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10414977 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10740924 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10524187 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10679020 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Bioprinting Plant Virus Nanoparticles for Immunotherapy and Relapse Prevention of Ovarian Cancer
生物打印植物病毒纳米颗粒用于卵巢癌的免疫治疗和复发预防
- 批准号:
10351191 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别: