IOPSxV: Novel Visualization for Non-Fluoroscopic 3D Image Guidance for Peripheral Vascular Interventions.
IOPSxV:用于外周血管干预的非透视 3D 图像指导的新型可视化。
基本信息
- 批准号:9908555
- 负责人:
- 金额:$ 63.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAgreementAlgorithm DesignAlgorithmsAnatomyAngiographyArteriesAtherosclerosisBalloon AngioplastyBlood VesselsBrainCadaverCardiacCaregiversCaringCathetersClinicalColorComplexContrast MediaCustomDataDependenceDepositionDevelopmentDevice DesignsDevicesDiagnosticDiseaseEconomicsExposure toFeasibility StudiesFemoral veinFinancial compensationFluoroscopyFundingGoalsGoldHealthHealthcareHeartHumanHybridsImageIndividualInterventionIntuitionIonizing radiationLimb structureLocationLow Dose RadiationLower ExtremityMapsMeasurementMethodsModelingNeurologicOperative Surgical ProceduresOutcomePatientsPerformancePeripheralPeripheral Vascular DiseasesPhasePositioning AttributePostoperative ComplicationsProceduresProcessQuestionnairesRadiationRadiation Dose UnitResourcesRiskRoentgen RaysRotationRural PopulationScanningSiteSmall Business Innovation Research GrantSurveysSystemTechniquesTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingTimeUncertaintyVascular SystemVisualizationWorkX-Ray Computed Tomographybasebonecalcificationcommercializationcone-beam computed tomographycostdesignexperiencehealth care qualityimage guidedimprovedinnovationinterestmathematical methodsmathematical modelminiaturizeminimally invasivenephrotoxicitynext generationnovelpatient populationprototypesensorsoftware developmentsurgery outcomethree-dimensional visualizationtoolusability
项目摘要
Project Summary/ Abstract
This SBIR Direct to Phase II project will advance the commercialization of our Intra-Operative Positioning
System (IOPS) to improve visualization and navigation of atherosclerotic vessels in patients with peripheral
vascular disease (PVD), thereby overcoming limitations of 2D x-ray fluoroscopy (“fluoro”) in peripheral
interventions. Our novel product employs registration methods that will increase precision of navigation of
catheters and guidewires devices through narrow or heavily calcified vasculature and provide visualization
from angles and with enhancement not achievable with fluoro. This approach not only enables operators to
see better during an intervention, but also dramatically reduces the need for exposure to harmful ionizing
radiation that poses health risks for both clinicians and patients. Importantly, enabling this novel level of
visualization will lead to a potential paradigm shift in the way PVD is treated. In this study we endeavor to
demonstrate new IOPS capabilities to 1) remove the IOPS dependency on cone beam CT imaging while
maintaining high tracking accuracy, 2) provide immediately intuitive 3D color visualization of calcified vessels
for enhanced surgical experience and outcomes, and 3) reduce the time and radiation dose required for
navigation. Ultimately, non-radiation-based visualization that is not limited by a 2D display will impact
healthcare by decreasing radiation to patients and OR staff, reducing procedure time and cost, and
decreasing operative and postoperative complications.
Centerline Biomedical has invested significant company resources to develop the IOPS technology, which is
currently under FDA review for 510(k) clearance. The next generation product, IOPSxV, builds on this
platform and, has been demonstrated to have feasibility to provide clinicians unparalleled ability to navigate
through a blood vessel which may have complex calcified plaque and be distending or deforming. In Phase II,
we will optimize miniaturized sensor-equipped catheters and patient position tracking pads, and validate the
calcification and deformation registration mathematical models in the human cadaveric limb model. Phase II
outcomes will demonstrate that use of IOPSxV as an adjunct to and confirmed by fluoro is safe and effective
and can lower radiation dose, while obtaining superior imaging of diseased vasculature in PVD patients,
paving the way to realizing the full clinical and economic benefits of endovascular interventions. Converting
this innovation to a product will expand the patient population eligible for minimally-invasive PVD treatment.
Additionally, by reducing component costs and dependence on complex imaging typically found only in large
hybrid surgical suites, we will be making IOPS more affordable and accessible to rural populations.
Commercialization of our technology will have implications beyond PVD, to include many emerging vascular,
cardiac, and neurologic procedures to benefit a broader population of patients, caregivers, and enable
delivery of better quality healthcare globally.!
项目摘要/摘要
这个SBIR直接进入第二阶段项目将推动我们的术中定位的商业化
系统(IOPS)以改善周围患者动脉粥样硬化视频的可视化和导航
血管疾病(PVD),从而克服了周围2D X射线荧光镜(“ Fluoro”)的局限性
干预措施。我们新颖的产品员工注册方法将提高导航的精度
通过狭窄或重钙化的脉管系统的导管和导线设备,并提供可视化
从角度和增强效果中无法实现。这种方法不仅使操作员能够
在干预期间看到更好的地方,但也大大减少了暴露于有害电离的需求
对临床医生和患者都有健康风险的辐射。重要的是,使这个新颖的水平
可视化将导致PVD处理方式的潜在范式转移。在这项研究中,我们努力
向1)删除对锥体梁CT成像的IOPS依赖性的新IOPS功能
保持高跟踪精度,2)立即提供钙化血管的直观3D颜色可视化
为了增强手术经验和结果,以及3)减少时间和辐射剂量
导航。最终,不受2D显示限制的非辐射可视化将影响
通过减少对患者和 /或员工的辐射,减少程序时间和成本的医疗保健,以及
减少操作和术后并发症。
中心线生物医学已投资了大量的公司资源来开发IOPS技术,这是
目前正在接受510(k)间隙的FDA审查。下一代产品IOPSXV在此基础上建立
平台并且已被证明具有可行性,可以为临床医生提供无与伦比的导航能力
通过可能具有复杂钙化斑块并变形或变形的血管。在第二阶段,
我们将优化配备传感器的小型导管和患者位置跟踪垫,并验证
人尸体肢体模型中的钙化和变形注册数学模型。第二阶段
结果将证明,使用iopsxv作为fluoro的辅助和确认是安全有效的
并且可以降低辐射剂量,同时获得PVD患者患病脉管系统的出色成像
为实现血管内干预的全部临床和经济利益铺平了道路。转换
对产品的这一创新将扩大有资格获得最低侵入性PVD治疗的患者人群。
另外,通过降低组件成本和对复杂成像的依赖,通常仅在大型中发现
混合手术套房,我们将使IOPS更加负担得起,人口更加可靠。
我们技术的商业化将具有PVD以外的含义,包括许多新兴的血管,
心脏和神经系统程序使更多的患者,看护人受益并启用
全球提供更好质量的医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikash Goel其他文献
Vikash Goel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikash Goel', 18)}}的其他基金
3D Holographic Guidance, Navigation, and Control (3D GN&C) for Endovascular Aortic Repair (EVAR)
3D 全息制导、导航和控制 (3D GN
- 批准号:
10001634 - 财政年份:2018
- 资助金额:
$ 63.69万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别: