3D Holographic Guidance, Navigation, and Control (3D GN&C) for Endovascular Aortic Repair (EVAR)

3D 全息制导、导航和控制 (3D GN

基本信息

  • 批准号:
    10001634
  • 负责人:
  • 金额:
    $ 80.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract This SBIR Phase II project will advance the commercialization of our 3D guidance, navigation, and control (3D- GNC) system to improve stent-graft (SG) deployment during endovascular aortic aneurysm repair (EVAR) by overcoming limitations of 2D x-ray fluoroscopy (“fluoro”). 3D-GNC will increase safety, effectiveness, and efficiency as a result of better visualization, particularly when deploying SGs within hostile aortic anatomy, with challenges such as short and/or angled landing zones. True 3D (360°), radiation-free GNC that is not limited by a 2D display will decrease radiation to patients and OR staff, reduce procedure time, and enable accurate SG positioning leading to fewer postoperative complications or need for re-intervention. Converting this innovation to a product will expand the patient population eligible for EVAR, particularly those with highly unfavorable aortic anatomy, as the demand and utilization of the minimally-invasive approach continues to rise. In Phase I, a 3D-GNC research prototype was developed and integrated with our Intra-Operative Positioning System (IOPS). The Guidance subsystem digitally augments the patient-specific aortic model to the surgical field using a modern, self-contained augmented/mixed reality head mounted display. Navigation accurately tracks in real-time the 3D position and orientation (P&O) of a sensor-equipped wire (IOPS-SG1 Wire) for projecting a SG hologram in spatial registration with the aorta hologram. Our holographic Control panel suggests P&O maneuvers as the delivery system approaches the aneurysm's proximal neck landing zone. Phase I results met all acceptance criteria for Specific Aims in terms of 1) usability in bench testing by a focus group of 10 surgeons, 2) accuracy for SG delivery system positioning in six 3D-printed aortic models with complex anatomy, and 3) benefits of 3D-GNC in our preclinical protocol relative to fluoro: radiation dose and contrast dose (100% decrease), procedure time (56.4% decrease), and orientation accuracy (41.5% increase). In Phase II, we will develop, verify and validate the 3D-GNC system based on Phase I outcomes, on-going user feedback, and our quality management system (QMS). We will evaluate usability at 3 leading aortic medical centers (Aim 1) and verify accuracy on the bench by deploying SGs from at least 2 manufacturers in 3D-printed models using designed controlled system components (Aim 2). After IDE and IRB clearance, we will conduct a first-in-human study in Aim 3 to demonstrate that use of 3D-GNC as an adjunct to and confirmed by fluoro is safe and effective and can lower radiation dose, while obtaining feedback for design finalization. All development will be in compliance with our QMS, toward preparation for FDA premarket clearance (Aim 4). Overcoming limitations of fluoro and improving SG placement will pave the way to realizing the full clinical and economic benefits of EVAR over highly invasive open surgical repair. Commercialization of our technology will have implications beyond aneurysmal disease to include many emerging vascular and cardiac procedures to benefit a broader population of patients, caregivers, and enable delivery of better quality healthcare globally.
项目总结/摘要 SBIR第二阶段项目将推进我们的3D制导、导航和控制(3D- GNC)系统,通过以下方式改善主动脉瘤腔内修复术(EVAR)期间覆膜支架(SG)的展开 克服了2D X射线荧光透视(“荧光透视”)的局限性。3D-GNC将提高安全性、有效性和 由于更好的可视化而提高了效率,特别是在不利的主动脉解剖结构内展开SG时, 例如短的和/或成角度的着陆区的挑战。真正的3D(360°),无辐射GNC,不受限制 通过2D显示器将减少对患者和手术室工作人员的辐射,减少手术时间, SG定位可减少术后并发症或再次介入的需要。转换此 产品创新将扩大腹主动脉瘤腔内修复术的患者人群,特别是那些高度 不利的主动脉解剖结构,因为微创方法的需求和使用持续上升。 在第一阶段,开发了一个3D-GNC研究原型,并与我们的术中定位相结合 系统(IOPS)。引导子系统将患者特定主动脉模型数字化增强到外科手术 现场使用一个现代的,自包含的增强/混合现实头戴式显示器。导航准确 实时跟踪配备传感器的导线(IOPS-SG 1 Wire)的3D位置和方向(P&O), 投影与所述主动脉全息图空间配准的SG全息图。我们的全息控制面板 建议在输送系统接近动脉瘤近端瘤颈着陆区时进行P&O操作。 第一阶段的结果符合特定目标的所有验收标准,即:1)在实验室测试中的可用性(通过焦点) 由10名外科医生组成的小组,2)6个3D打印主动脉模型中SG输送系统定位的准确性, 复杂的解剖结构,以及3)3D-GNC在我们的临床前方案中相对于荧光透视的优势:辐射剂量和 造影剂剂量(减少100%)、手术时间(减少56.4%)和方向准确性(增加41.5%)。 在第二阶段,我们将在第一阶段成果的基础上开发、验证和验证3D-GNC系统, 用户反馈和我们的质量管理体系(QMS)。我们将评价3个主动脉导联的可用性 医疗中心(目标1),并通过部署来自至少2家制造商的SG, 使用设计的受控系统组件的3D打印模型(目标2)。在IDE和IRB批准后,我们将 在Aim 3中进行了首次人体研究,以证明3D-GNC作为辅助治疗的使用,并通过 透视是安全有效的,可以降低辐射剂量,同时获得反馈以用于设计定型。所有 开发将符合我们的质量管理体系,为FDA上市前批准做准备(目标4)。 克服透视的局限性和改善SG放置将为实现完整的临床和 腹主动脉瘤腔内修复术相对于高侵入性开放手术修复的经济效益。我们技术的商业化将 其影响超出了血管疾病,包括许多新兴的血管和心脏手术, 使更广泛的患者和护理人员受益,并在全球范围内提供更高质量的医疗保健。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vikash Goel其他文献

Vikash Goel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vikash Goel', 18)}}的其他基金

IOPSxV: Novel Visualization for Non-Fluoroscopic 3D Image Guidance for Peripheral Vascular Interventions.
IOPSxV:用于外周血管干预的非透视 3D 图像指导的新型可视化。
  • 批准号:
    9908555
  • 财政年份:
    2020
  • 资助金额:
    $ 80.68万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 80.68万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 80.68万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 80.68万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 80.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了