Harnessing Paracrine Mechanisms of Stem Cell-mediated Cardiac Contractile Enhancement
利用干细胞介导的心脏收缩增强的旁分泌机制
基本信息
- 批准号:9910439
- 负责人:
- 金额:$ 42.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlternative TherapiesAnimal ModelBathingBiological ModelsBiologyBiomimeticsBiophysicsBioreactorsCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCell CommunicationCell Culture TechniquesCell LineCell TherapyCell TransplantationCellsClinical TrialsCollagenConditioned Culture MediaCouplingDataEnvironmentEvaluationGeneticHeartHeart failureHumanHuman EngineeringIn VitroIndividualInjectionsInterdisciplinary StudyLeadMediatingMediator of activation proteinMesenchymal Stem CellsModelingMolecularMyocardiumNational Heart, Lung, and Blood InstituteParacrine CommunicationPatientsPerformancePluripotent Stem CellsProcessRecoveryResearchRiskRoleSamplingSignal TransductionSpecies SpecificityStimulusSystemTechnologyTestingTherapeuticTherapeutic AgentsTissue EngineeringTissue ModelTissuesTreatment EfficacyUrsidae Familyangiogenesiscardiac tissue engineeringclinically relevantdesignexosomeexperimental studyimmunoregulationimplantationimprovedin vitro Modelin vivoin vivo Modelinnovationinterestmicrovesiclesmouse modelnovelparacrinerepairedscaffoldself assemblysensor technologystem cell therapystem cellssuccesstherapeutic evaluation
项目摘要
An emerging approach to treat patients with heart failure from non-ischemic cardiomyopathy (NICM)
involves delivery of mesenchymal stem cells (MSCs) that can that can improve CM performance in cell culture
and in animal models, and are being tested in ongoing clinical trials. The functional benefits of MSC-therapy
may involve a variety of mechanisms, but it remains unclear whether transplanted cells act primarily through
direct cell-cell interactions, or through indirect paracrine signaling via soluble factors or via special
microvesicles called exosomes that can transfer molecular cargo. Understanding MSC-enhanced CM function
could lead to improved cardiotherapeutics, but progress has been hampered by the limits of existing models
systems for understanding paracrine signaling in the cardiac niche environment.
Directly addressing an NHLBI topic of special interest (HL-142) on the role of exosomes as paracrine signal
mediators in cardiovascular disease, this proposal aims to use 3D human engineered cardiac tissue (hECT) as
a controllable biomimetic in vitro model of native human myocardium in order to identify the primary factors
underlying MSC-mediated effects on cardiomyocyte contractile function. A novel multi-hECT bioreactor
system with integrated force-sensing technology has generated preliminary data supporting a predominant
effect of extrinsic paracrine signaling mechanisms, including bioactive secreted exosomes, that significantly
exceed the benefits of direct coupling between MSCs and hCMs in human engineered cardiac tissues.
The governing hypothesis is that MSC treatment causes direct enhancement of cardiomyocyte contractile
function primarily through paracrine signaling mechanisms involving secreted exosomes that can be identified,
isolated, deconstructed and delivered as an alternative therapy for non-ischemic heart failure. Specific Aim 1
will resolve the environmental conditions that maximize MSC paracrine enhancement of hECT contractile
performance, advancing our understanding of specific biophysical stimuli that modulate cardioactive signaling
processes. Aim 2 will identify the role of exosomes and their molecular cargo in MSC-mediated contractile
enhancement of hECTs by evaluating the potency of hMSC exosomes and cargo on hECT contractile function
(Sub-aim 2a) and determining the molecular identity of lead inotropic compounds from hMSC exosome cargo
(Sub-aim 2b). Finally, Aim 3 will evaluate the therapeutic efficacy of delivered hMSC exosome-derived
cardiotropic factors on recovery of contractility using in vitro (Sub-aim 3a) and in vivo (Sub-aim 3b) models of
non-ischemic heart failure. By capturing the benefits of MSC therapy while circumventing the potential risks of
live cell implantation, this proposal may lead to improved treatment options for patients who suffer heart failure
from non-ischemic cardiomyopathy.
一种治疗非缺血性心肌病 (NICM) 心力衰竭患者的新兴方法
涉及间充质干细胞 (MSC) 的输送,可以改善细胞培养中的 CM 性能
以及动物模型,并且正在正在进行的临床试验中进行测试。间充质干细胞疗法的功能益处
可能涉及多种机制,但目前尚不清楚移植细胞是否主要通过
直接的细胞间相互作用,或通过可溶性因子或特殊的间接旁分泌信号传导
称为外泌体的微泡可以转移分子货物。了解MSC增强的CM功能
可能会改善心脏治疗,但现有模型的局限性阻碍了进展
用于理解心脏生态位环境中的旁分泌信号传导的系统。
直接讨论 NHLBI 特别感兴趣的主题 (HL-142),即外泌体作为旁分泌信号的作用
心血管疾病的介质,该提案旨在使用 3D 人体工程心脏组织 (hECT) 作为
天然人类心肌的可控仿生体外模型,以确定主要因素
MSC 介导的对心肌细胞收缩功能的潜在影响。一种新型多hECT生物反应器
具有集成力传感技术的系统已生成支持主要数据的初步数据
外在旁分泌信号机制的影响,包括生物活性分泌的外泌体,显着
超过了人类工程心脏组织中 MSC 和 hCM 之间直接耦合的好处。
主要假设是 MSC 治疗导致心肌细胞收缩力直接增强
主要通过旁分泌信号传导机制发挥作用,涉及可识别的分泌外泌体,
分离、解构并作为非缺血性心力衰竭的替代疗法提供。具体目标 1
将解决最大化 MSC 旁分泌增强 hECT 收缩的环境条件
性能,增进我们对调节心脏活性信号传导的特定生物物理刺激的理解
流程。目标 2 将确定外泌体及其分子货物在 MSC 介导的收缩中的作用
通过评估 hMSC 外泌体和货物对 hECT 收缩功能的效力来增强 hECT
(子目标 2a)并确定 hMSC 外泌体货物中铅正性肌力化合物的分子特性
(子目标 2b)。最后,目标 3 将评估递送的 hMSC 外泌体的治疗效果
使用体外(子目标 3a)和体内(子目标 3b)模型研究心肌因子对收缩力恢复的影响
非缺血性心力衰竭。通过捕捉 MSC 治疗的益处,同时规避潜在风险
活细胞植入,该提案可能会改善心力衰竭患者的治疗选择
来自非缺血性心肌病。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational design of custom therapeutic cells to correct failing human cardiomyocytes.
定制治疗细胞的计算设计,以纠正衰竭的人类心肌细胞。
- DOI:10.3389/fsysb.2023.1102467
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tieu,Andrew;Phillips,KatherineG;Costa,KevinD;Mayourian,Joshua
- 通讯作者:Mayourian,Joshua
Cardiac Tissue Engineering Models of Inherited and Acquired Cardiomyopathies.
遗传性和获得性心肌病的心脏组织工程模型。
- DOI:10.1007/978-1-4939-8597-5_11
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Turnbull,IreneC;Mayourian,Joshua;Murphy,JackF;Stillitano,Francesca;Ceholski,DelaineK;Costa,KevinD
- 通讯作者:Costa,KevinD
In silico Cell Therapy Model Restores Failing Human Myocyte Electrophysiology and Calcium Cycling in Fibrotic Myocardium.
- DOI:10.3389/fphys.2021.755881
- 发表时间:2021
- 期刊:
- 影响因子:4
- 作者:Phillips KG;Turnbull IC;Hajjar RJ;Costa KD;Mayourian J
- 通讯作者:Mayourian J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN D COSTA其他文献
KEVIN D COSTA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN D COSTA', 18)}}的其他基金
Auxetic Ventricular Support Device for Chronic Myocardial Infarction
慢性心肌梗塞的拉胀心室支持装置
- 批准号:
9809489 - 财政年份:2019
- 资助金额:
$ 42.12万 - 项目类别:
Morphogenetic Self-Assembly of Human Heart Organoids
人类心脏类器官的形态发生自组装
- 批准号:
9392443 - 财政年份:2017
- 资助金额:
$ 42.12万 - 项目类别:
Harnessing Paracrine Mechanisms of Stem Cell-mediated Cardiac Contractile Enhancement
利用干细胞介导的心脏收缩增强的旁分泌机制
- 批准号:
9318983 - 财政年份:2017
- 资助金额:
$ 42.12万 - 项目类别:
Engineered Cardiac Niche Arrays for Exploring and Optimizing Stem Cell Therapies
用于探索和优化干细胞疗法的工程心脏生态位阵列
- 批准号:
8020921 - 财政年份:2010
- 资助金额:
$ 42.12万 - 项目类别:
Integrated AFM and Real-Time Confocal Microscope Core
集成 AFM 和实时共焦显微镜核心
- 批准号:
7794679 - 财政年份:2010
- 资助金额:
$ 42.12万 - 项目类别:
Engineered Cardiac Niche Arrays for Exploring and Optimizing Stem Cell Therapies
用于探索和优化干细胞疗法的工程心脏生态位阵列
- 批准号:
7789296 - 财政年份:2010
- 资助金额:
$ 42.12万 - 项目类别:
CONFINED COMPRESSION OF SINGLE CELLS USING AFM
使用 AFM 对单细胞进行有限压缩
- 批准号:
6944893 - 财政年份:2004
- 资助金额:
$ 42.12万 - 项目类别:
CONFINED COMPRESSION OF SINGLE CELLS USING AFM
使用 AFM 对单细胞进行有限压缩
- 批准号:
6854907 - 财政年份:2004
- 资助金额:
$ 42.12万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.12万 - 项目类别:
Research Grant