Advancing the measurement of emotional well-being with the Day Reconstruction Method

使用日重建法推进情绪健康的测量

基本信息

项目摘要

7. Project Summary/Abstract The Day Reconstruction Method (DRM) has found widespread attention as a survey method for the measurement of daily emotional well-being experiences in large-scale population-based research. The DRM collects granular information about affective experiences as they unfold over the course of a day. Typically, the overall (“average”) level of emotions serves as an indicator of a person’s emotional well-being from the DRM. However, many aspects of people’s emotional lives are not captured by how they feel on average. The proposed application seeks to utilize the rich information inherent in the DRM for the construction of measures capturing dynamic aspects of emotional well-being, involving the intensity, frequency, variability, regulation, and complexity of a person’s everyday emotional experiences. Drawing on a rich repertoire of existing metrics of intrapersonal emotion dynamics developed in laboratory and ambulatory assessment research, we take the approach of examining whether these metrics can be successfully applied to population-level research afforded by the DRM. The psychometric properties of the new DRM metrics will be systematically evaluated and compared in a probability-based Internet panel of 1000 respondents 50 years or older, including their reliability, their correspondence with parallel indices derived from ecological momentary assessments, and their susceptibility to response style artifacts. Cognitive interviews with DRM respondents will shed light on cognitive strategies for completing the instrument that could either facilitate or impede the content validity of the new DRM metrics. To evaluate the extent to which the new DRM metrics can augment understanding of well-being and health disparities in older ages, we will examine the ability of the new DRM metrics to discriminate between demographic subgroups (age, sex, education, race/ethnicity, disability); we will further examine which of the metrics are predictive of changes in health outcomes. New metrics of emotional well- being derived from the DRM could facilitate large-scale analyses of disparities of emotional health and dysfunction, refine understanding of the development and determinants of well-being in the aging population, and augment options for evaluating policy decisions.
7.项目总结/摘要 日重建法(DRM)作为一种调查方法得到了广泛的关注, 在大规模的基于人群的研究中测量日常情绪幸福感体验。的DRM 收集情感体验在一天中展现的颗粒信息。通常 情绪的总体(“平均”)水平用作来自DRM的人的情绪健康的指标。 然而,人们情感生活的许多方面并不是由他们的平均感受来捕捉的。拟议 该申请寻求利用DRM中固有的丰富信息来构建措施 捕捉情绪健康的动态方面,包括强度,频率,可变性,调节, 一个人日常情感经历的复杂性和复杂性。利用丰富的现有指标 在实验室和流动评估研究中开发的自我情感动力学,我们采取了 研究这些指标是否可以成功地应用于人口水平的研究提供了一种方法 在DRM将系统地评估新DRM指标的心理测量特性, 在一个由1000名50岁或50岁以上的受访者组成的基于概率的互联网小组中进行了比较,其中包括他们的 可靠性,它们与生态瞬时评估得出的平行指数的对应关系,以及 他们对反应风格假象的敏感性。对DRM受访者的认知访谈将揭示 完成工具的认知策略,可以促进或阻碍内容的有效性 新的DRM指标。评估新的DRM指标可以在多大程度上增强对 老年人的幸福和健康差异,我们将研究新的DRM指标的能力, 区分人口统计学亚组(年龄、性别、教育、种族/民族、残疾);我们将进一步 检查哪些指标可以预测健康结果的变化。新的情感健康指标- 从DRM中得出的结果可以促进对情绪健康差异的大规模分析, 功能障碍,完善对老龄人口福祉的发展和决定因素的理解, 并增加评估政策决定的选择。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doerte Ulrike Junghaenel其他文献

Doerte Ulrike Junghaenel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
  • 批准号:
    EP/Y03726X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Standard Grant
Affective Computing Models: from Facial Expression to Mind-Reading ("ACMod")
情感计算模型:从面部表情到读心术(“ACMod”)
  • 批准号:
    EP/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Research Grant
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
  • 批准号:
    BB/X014673/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Research Grant
Interface: Transplants, Aesthetics and Technology (Previously About Face: The affective and cultural history of face transplants)
界面:移植、美学和技术(之前关于面部:面部移植的情感和文化历史)
  • 批准号:
    MR/Y011627/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Fellowship
Affective and Immaterial Labour in Latin(x) American Culture
拉丁美洲文化中的情感和非物质劳动
  • 批准号:
    AH/V015834/2
  • 财政年份:
    2023
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Fellowship
Home/bodies: Exploring the affective experiences of people at home using scenographic practice and ecological thinking
家/身体:利用场景实践和生态思维探索人们在家中的情感体验
  • 批准号:
    2888014
  • 财政年份:
    2023
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Studentship
Imagination under Racial Capitalism: the Affective Salience of Racialised and Gendered Tropes of 'Black excellence'
种族资本主义下的想象力:“黑人卓越”的种族化和性别化比喻的情感显着性
  • 批准号:
    2889627
  • 财政年份:
    2023
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Studentship
Tracing the brain mechanisms of affective touch.
追踪情感触摸的大脑机制。
  • 批准号:
    23K19678
  • 财政年份:
    2023
  • 资助金额:
    $ 20.63万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了