Harnessing Patient Generated Data to Find Causes and Effects of Diet in Pregnancy
利用患者生成的数据来查找怀孕期间饮食的原因和影响
基本信息
- 批准号:9914388
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsBedsBirthBlood GlucoseCaloriesChronic DiseaseDataData SetDiabetes MellitusDiabetic DietDietDietary FactorsEventFoodGestational DiabetesGlucoseHealthHealth StatusHospitalsIndividualInstructionLifeLife StyleMacronutrients NutritionMeasuresMeatMedicalMethodsModelingNon-Insulin-Dependent Diabetes MellitusOntologyOutcomePatientsPopulationPregnancyProteinsPsychological TransferPublic HealthRiskRisk FactorsSystemTestingTimeTo specifydesigndiabetes riskhealth datainsightnutritionpregnant
项目摘要
Enormous amounts of biomedical data are generated by hospitals, but most of this data is available only
after people become ill. For people with chronic diseases such as diabetes, though, many important events
happen outside of the medical system. Patient generated health data (PGHD) can provide detailed insight
into an individual's health during daily life. With longterm continuous glucose data, activity data, and food
logs, we could develop personalized models of how factors affect blood glucose and deliver personalized
guidance to patients on how to better manage it. Transforming PGHD into information to guide decisions is
a highly general problem that applies to all forms of diabetes, and other chronic diseases. We specifically
focus on identifying dietary and lifestyle risk factors for gestational diabetes mellitus (GDM). GDM occurs in
9% of pregnancies, and leads to a 7-fold increase in Type 2 Diabetes risk after birth, making it a significant
public health problem. Pregnancy provides an ideal test bed for methods designed to make use of PGHD
and uncover causes, as outcomes can be captured in a limited study duration. Motivated by trying to find
causes and effects of nutrition in pregnancy, we develop generalizable algorithms that address widespread
challenges in the use of PGHD for causal inference. First, existing causal inference methods assume we
have well-defined variables (e.g. bodyweight), but nutrition can be measured in many ways (calories,
macronutrients, food groups). This puts a large burden on users, and limits the potential for data-driven
inference. We introduce the first causal inference algorithm that automatically identifies optimal variable
granularity for each relationship, by leveraging ontologies. This allows identification of different effects
between, say, protein and specific meats on health outcomes, without users needing to specify such
hypotheses. Second, while individual level data is essential for personalized inference, only limited data
may be available when a treatment decision must be made or when health status is changing over time,
such as during pregnancy. Leveraging population data can yield more accurate inferences, but existing
methods are unable to identify relevant data dynamically and pregnant individuals may be more similar to
others at the same stage of pregnancy than to themselves in the recent past. We introduce new methods
for dynamic causal transfer learning that continually identify and adapt relevant population data for
personalized causal inference. We initially test our approach on publicly available ICU, diabetes, and
nutrition datasets, before collecting a unique dietary and activity dataset from 150 pregnant individuals.
医院产生了大量的生物医学数据,但这些数据中的大部分都是只能获得的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREA L DEIERLEIN其他文献
ANDREA L DEIERLEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREA L DEIERLEIN', 18)}}的其他基金
Harnessing Patient Generated Data to Find Causes and Effects of Diet in Pregnancy
利用患者生成的数据来查找怀孕期间饮食的原因和影响
- 批准号:
10402359 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Harnessing Patient Generated Data to Find Causes and Effects of Diet in Pregnancy
利用患者生成的数据来查找怀孕期间饮食的原因和影响
- 批准号:
9980490 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Effects of BPA and Phthalates on Adiposity and Metabolic Risk Factors in Women
BPA 和邻苯二甲酸盐对女性肥胖和代谢危险因素的影响
- 批准号:
8618462 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists