SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
基本信息
- 批准号:9926403
- 负责人:
- 金额:$ 24.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAcuteAddressAdoptedAdoptionAlgorithmsAmericanAreaBig DataBig Data MethodsCare given by nursesCaringClinicalClinical PathwaysCoupledDataData ScienceDecision MakingDeveloped CountriesDevelopmentDimensionsDiscipline of NursingDocumentationElectronic Health RecordEquilibriumEventEvolutionFamily CaregiverFeedbackFeesGoalsGuidelinesHealthHealth PersonnelHealthcareHealthcare SystemsHospitalsInformaticsInfrastructureInstitute of Medicine (U.S.)InstitutionInternationalInvestigationKnowledgeLabelLeadLearningLimesMachine LearningMeasuresMedicalMedicineMethodsMiningMissionModelingNurse AdministratorNursesNurses Performance EvaluationsNursing InformaticsOutcomePatient-Focused OutcomesPatientsPatternPhysiciansProcessPublicationsQuality IndicatorRecoveryReportingResearchRiskSafetySchool NursingSeminalSourceStructureSystemTextTimeTrainingUncertaintyUnited States Centers for Medicare and Medicaid ServicesUnited States National Library of MedicineWeightWorkarmbaseclinical practicecomputer sciencedata miningdata modelingdesignflexibilitygraduate studenthealth care qualityimprovedindexingindividual patientindustry partnerinnovationlearning algorithmmassive open online coursesmultimodalitynursing care qualityopen sourcepatient populationpatient safetyphrasespredictive modelingsupervised learningtoolvector
项目摘要
Two decades have lapsed since the seminal publications of the National Academy of Medicine (formerly
the Institute of Medicine), To Err Is Human and Crossing the Quality Chasm, cast a national spotlight on
health-care safety and quality, yet US patient outcome indices continue to lag behind those in other
industrialized countries. The 2009 American Recovery and Reinvestment Act mandated health-care
providers adopt electronic health record (EHR) systems, leading to widespread EHR adoption, albeit
primarily for billing purposes rather than research or quality improvement efforts. Thus EHR impact on
health-care quality has tended to be in the domains of physician efficiency and guideline compliance.
Despite a large body of evidence that nursing quality is directly related to patient outcomes in the acute
care selling, nurses often lack timely information to use in improving individual patient outcomes, and
indices of outcomes across patient populations are slow to budge over lime. Widespread adoption of EHRs
in U.S. hospitals now allows determination of outcome quality indicators for all patients in a hospital for
real-time feedback to nurses. Quality indicators are often only determined by piecing together other
information to determine occurrence of an incident, e.g., exhuming information buried in nursing notes.
The goal is to develop Chart-assessment for Real-lime Investigation of Nursing and Guidance (CARING),
an automated machine learning system to report and predict nursing quality indicators in real-time for
hospitalized patients to assist nurses in care planning. CARI NG will reflect algorithmic innovations to mine
sequential patterns from multi-sourced, heterogeneous data including nursing narratives, yielding robust
predictive models that are insensitive to uncertain labels and evolve with changes in health-care practices.
CARING will represent EHR data using inter-connected tensors, capturing higher-order relations, temporal
weighting, i.e., more recent data receives more weight, and incorporating domain expert feedback in
development. Although CARING will be developed initially for the ten hospitals of our industry partner
Emory Healthcare, its flexible refinement will enable adaptation at other health-care institutions. Outcomes
of this project will give nurses actionable data in real time to improve nursing care quality that they do not
receive now. Moreover, this system can be implemented into the health information infrastructure at an
institutional level, integrating multi-scale and multi-level clinical, contextual, and organizational data
surrounding each patient for real-time reporting and incorporation into predictive models.
自美国国家医学科学院(前身)的开创性出版物以来,已经过去了二十年。
医学研究所),犯错是人类和跨越质量鸿沟,投下了全国的聚光灯,
医疗安全和质量,但美国患者结局指数继续落后于其他国家
工业化国家。2009年的《美国复苏和再投资法案》规定,
提供者采用电子健康记录(EHR)系统,导致EHR的广泛采用,尽管
主要用于计费目的,而不是研究或质量改进工作。因此,EHR对
保健质量往往在医生的效率和遵守准则方面。
尽管有大量的证据表明,护理质量直接关系到病人的结果,在急性
护理销售,护士往往缺乏及时的信息,用于改善个别病人的结果,
患者群体的结果指数随着时间推移而缓慢变化。广泛采用电子健康记录
在美国医院,现在允许确定医院中所有患者的结果质量指标,
实时反馈给护士。质量指标往往只能通过拼凑其他指标来确定。
确定事故发生的信息,例如,挖掘隐藏在护理笔记中的信息
目的是开发护理指导实时调查量表(CARING),
自动化机器学习系统,实时报告和预测护理质量指标,
住院病人,以协助护理规划护士。CARI NG将反映算法创新,
来自多源、异质数据(包括护理叙述)的序列模式,
预测模型对不确定的标签不敏感,并随着医疗保健实践的变化而发展。
CARING将使用相互连接的张量表示EHR数据,捕获高阶关系,时间关系,
加权,即,最近的数据得到更多的权重,并将领域专家反馈纳入
发展虽然CARING最初将为我们的行业合作伙伴的十家医院开发,
埃默里医疗保健,其灵活的改进将使适应在其他医疗保健机构。成果
将为护士提供真实的可操作的数据,以提高护理质量,
现在接收。此外,该系统可以在医疗信息基础设施中实现,
机构层面,整合多尺度和多层次的临床、情境和组织数据
围绕每个患者进行实时报告并纳入预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VICKI Stover HERTZBERG其他文献
VICKI Stover HERTZBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VICKI Stover HERTZBERG', 18)}}的其他基金
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10522560 - 财政年份:2022
- 资助金额:
$ 24.8万 - 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
- 批准号:
10703469 - 财政年份:2022
- 资助金额:
$ 24.8万 - 项目类别:
Machine Learning for Atrial Fibrillation Ablation
心房颤动消融的机器学习
- 批准号:
10115455 - 财政年份:2021
- 资助金额:
$ 24.8万 - 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
- 批准号:
10221054 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
- 批准号:
10453755 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
- 批准号:
10018103 - 财政年份:2019
- 资助金额:
$ 24.8万 - 项目类别:
Data Science Core - Center for the Study of Symptom Science, Metabolomics and Multiple Chronic Conditions
数据科学核心 - 症状科学、代谢组学和多种慢性病研究中心
- 批准号:
10194618 - 财政年份:2018
- 资助金额:
$ 24.8万 - 项目类别:
Data Science Core - Center for the Study of Symptom Science, Metabolomics and Multiple Chronic Conditions
数据科学核心 - 症状科学、代谢组学和多种慢性病研究中心
- 批准号:
10456831 - 财政年份:2018
- 资助金额:
$ 24.8万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 24.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 24.8万 - 项目类别:
Standard Grant