Machine Learning for Atrial Fibrillation Ablation

心房颤动消融的机器学习

基本信息

  • 批准号:
    10115455
  • 负责人:
  • 金额:
    $ 11.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-08 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

SUMMARY Affecting over 6 million people in the U.S., atrial fibrillation (AF), the most common cardiac arrhythmia, is a major public health concern. AF is costly to the health care system and leads to significant health consequences (e.g., stroke, heart failure, dementia, decreased quality of life). With time, AF patients experience increased frequency and duration of AF episodes. Random occurrence of sporadic AF episodes and the need for anticoagulation to prevent stroke make AF difficult to manage. Many AF patients seek out atrial fibrillation ablation (AFA) in order to improve quality of life and decrease AF episodes. AFA, cauterization of areas of the left atrium, is the most effective treatment for persistent / paroxysmal AF. AFA success rates vary, but many patients will not be AF-free following AFA. At leading AFA centers, AF-free rates at one and two years after initial AFA were 40% and 37%, respectively. Given the modest success rates of AFA, patient selection for this procedure should receive more attention. Sociodemographic and clinical phenotype data have been used to predict AFA response, but collectively they have poor predictive ability. The widespread adoption of electronic health record (EHR) systems presents a ripe opportunity for a paradigm shift for predicting AFA outcomes. A better understanding of patient specific factors predicting AFA outcome will inform patient selection for this procedure. To this end we propose to use machine learning techniques to develop predictive models for outcomes of primary AFA procedures, addressing the following specific aims and research questions: 1. Aim 1: Predict adverse AFA outcomes using machine learning. • How well do existing risk scores predict AFA complications prior to initial procedure? • Can a machine learning model trained on EHR data provide better prediction of AFA complications? 2. Aim 2: Data-driven AFA outcome subgroup identification. • Can cluster analysis identify useful subgroups based on outcome trajectory? • Are other unsupervised ML algorithms such as sequential pattern mining alternatives for analyzing patient outcome trajectories? 3. Aim 3: Develop an open-source software toolkit. This project will lay the foundation for future refinement of existing machine learning methods as well as development of new methods to improve prediction of AF recurrence following AFA.
总结 影响了美国600多万人,心房纤颤(AF)是最常见的心律失常, 公共卫生问题。AF对医疗保健系统来说是昂贵的,并导致严重的健康后果(例如, 中风、心力衰竭、痴呆、生活质量下降)。随着时间的推移,房颤患者的发病频率会增加 和AF发作的持续时间。偶发性房颤发作的随机发生和抗凝治疗的需要, 预防中风使房颤难以管理。许多房颤患者寻求房颤消融术(AFA), 改善生活质量并减少房颤发作。AFA,左心房区域的烧灼,是最常见的 持续性/阵发性房颤的有效治疗。AFA的成功率各不相同,但许多患者不会完全消除房颤 在AFA之后。在领先的AFA中心,初始AFA后一年和两年的无AF率分别为40%和37%, 分别考虑到AFA的成功率不高,选择这种手术的患者应该得到更多的支持。 关注社会人口统计学和临床表型数据已被用于预测AFA反应,但 它们共同具有较差的预测能力。电子健康记录(EHR)系统的广泛采用 为预测AFA结果的范式转变提供了一个成熟的机会。更好地了解患者 预测AFA结果的特定因素将为该手术的患者选择提供信息。为此,我们建议 使用机器学习技术来开发初级AFA手术结果的预测模型, 针对以下具体目标和研究问题: 1.目标1:使用机器学习预测不良AFA结果。 ·现有的风险评分在多大程度上预测了初次手术前的AFA并发症? ·在EHR数据上训练的机器学习模型能否更好地预测AFA并发症? 2.目的2:数据驱动的AFA结局亚组识别。 ·聚类分析能否根据结果轨迹识别有用的亚组? ·其他无监督ML算法(如序列模式挖掘)是否可用于分析 患者结局轨迹? 3.目标3:开发一个开放源码软件工具包。 该项目将为未来改进现有的机器学习方法奠定基础, 开发新方法以改善AFA后AF复发的预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VICKI Stover HERTZBERG其他文献

VICKI Stover HERTZBERG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VICKI Stover HERTZBERG', 18)}}的其他基金

Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
  • 批准号:
    10522560
  • 财政年份:
    2022
  • 资助金额:
    $ 11.25万
  • 项目类别:
Sensor Hardware and Intelligent Tools for Assessing the Health Effects of Heat Exposure
用于评估热暴露对健康影响的传感器硬件和智能工具
  • 批准号:
    10703469
  • 财政年份:
    2022
  • 资助金额:
    $ 11.25万
  • 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
  • 批准号:
    9926403
  • 财政年份:
    2019
  • 资助金额:
    $ 11.25万
  • 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
  • 批准号:
    10221054
  • 财政年份:
    2019
  • 资助金额:
    $ 11.25万
  • 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
  • 批准号:
    10453755
  • 财政年份:
    2019
  • 资助金额:
    $ 11.25万
  • 项目类别:
SCH: INT Re-envisioned Chat-assessment for Real-time Investigating of Nursing and Guidance
SCH:INT 重新设想的用于护理和指导实时调查的聊天评估
  • 批准号:
    10018103
  • 财政年份:
    2019
  • 资助金额:
    $ 11.25万
  • 项目类别:
Data Science Core - Center for the Study of Symptom Science, Metabolomics and Multiple Chronic Conditions
数据科学核心 - 症状科学、代谢组学和多种慢性病研究中心
  • 批准号:
    10194618
  • 财政年份:
    2018
  • 资助金额:
    $ 11.25万
  • 项目类别:
Data Science Core - Center for the Study of Symptom Science, Metabolomics and Multiple Chronic Conditions
数据科学核心 - 症状科学、代谢组学和多种慢性病研究中心
  • 批准号:
    10456831
  • 财政年份:
    2018
  • 资助金额:
    $ 11.25万
  • 项目类别:
STATISTICAL METHODS FOR REPRODUCTIVE EPIDEMIOLOGY
生殖流行病学统计方法
  • 批准号:
    3317691
  • 财政年份:
    1987
  • 资助金额:
    $ 11.25万
  • 项目类别:
STATISTICAL METHODS FOR REPRODUCTIVE EPIDEMIOLOGY
生殖流行病学统计方法
  • 批准号:
    3317692
  • 财政年份:
    1987
  • 资助金额:
    $ 11.25万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了