Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
基本信息
- 批准号:9919750
- 负责人:
- 金额:$ 4.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAgingAllogenicAortaArterial LinesAutophagocytosisBioenergeticsBiogenesisBiomechanicsBiophysicsBlood VesselsBlood flowBone MarrowCREB1 geneCalciumCardiacCell SurvivalCellsChemicalsClinicalCoculture TechniquesCuesCustomCyclic AMPCyclic AMP-Dependent Protein KinasesDNA DamageDataDerivation procedureDevelopmentDinoprostoneDisease modelEmbryoEmbryonic DevelopmentEndothelial CellsEnergy MetabolismEngineeringEngraftmentEnvironmentFatty AcidsGenerationsGeneticGoalsGonadal structureHematologic NeoplasmsHematological DiseaseHematopoiesisHematopoieticHematopoietic Stem Cell SpecificationHematopoietic Stem Cell TransplantationHematopoietic stem cellsHumanImpairmentIn VitroInterruptionKnowledgeLinkLiquid substanceMembrane PotentialsMesonephric structureMetabolicMetabolismMethodsMitochondriaModelingMusNitric OxideOutcomeOxidative PhosphorylationPathway interactionsPatientsPharmacologyPhysiologicalPlayPluripotent Stem CellsProductionQuality ControlRNARegulationReporterResearchRoleSIRT1 geneSignal TransductionSourceSpecific qualifier valueStem cellsTestingTherapeuticTo specifyTransplant-Related DisorderTransplantationUmbilical Cord BloodVascular Endothelial CellVirus Integrationblood treatmentcell motilityexperimental studyfitnessgain of functionhematopoietic differentiationhematopoietic genehematopoietic stem cell emergencehematopoietic stem cell expansionhematopoietic stem cell fatehematopoietic stem cell nichehemodynamicshemogenic endotheliumimprovedin vivoinsightknock-downmechanotransductionmouse modelmutantnovelperipheral bloodprogenitorprogramsreconstitutionrecruitresponseself-renewalshear stressstem cell fate specificationstem cell therapysuccesstranscriptome
项目摘要
PROJECT SUMMARY
For several decades, clinical outcomes of allogeneic hematopoietic stem cell (HSC) transplantation have been
limited by the availability of donor-matched sources of HSCs. This has motivated global improvements in donor
recruitment and matching, as well as aggressive pursuit of new strategies for development of patient-derived or
universally compatible hematopoietic cells. Attempts to specify human HSCs have only produced progenitors
with limited lineage and engraftment potential using co-culture and expression of hematopoietic genes through
modified RNAs or viral integration.
Our studies show that biomechanical force caused by flow of blood through the vasculature is a critical regulator
of hematopoiesis and can promote engraftment of cells with long-term hematopoietic reconstitution potential. A
number of well-characterized pathways are activated by fluid shear stress in adult vascular endothelial cells, yet
little is known about signaling within hemogenic endothelial cells and their precursors in embryogenesis. Our
preliminary data strongly implicates initiation of blood flow as a critical determinant of energy metabolism and
mitochondrial dynamics in the HSC precursor known as the hemogenic endothelium.
The objective of our research is to define signaling mechanisms triggered by biomechanical force that promote
definitive hematopoiesis, with the long-term goal of exploiting biophysical cues such as shear stress in directed
differentiation and expansion of customized HSCs for therapeutic transplant and blood disease modeling.
Specifically, we aim to identify mitochondrial adaptations induced by vascular force that promote expansion of
hemogenic endothelium via utilization of reporter mouse models of HSC emergence and mitochondrial dynamics.
We will identify mitochondrial features that contribute to fate selection and survival of cells with HSC potential
using murine embryos and differentiation cultures of pluripotent stem cells. We will interrogate and define the
intracellular signaling that drives mitochondrial remodeling in response to physiologic intensities of fluid force in
hemogenic endothelium by pharmacological and genetic targeting. Further, consequences of disrupted or
enhanced mitochondrial capacity will be defined during hemogenic endothelial cell fate selection and into
adulthood to reveal how mitochondrial dynamics impact the hematopoietic program at its earliest stages within
the vasculature. The proposed study promises to fill a major gap in our knowledge of how newly specified HSCs
and their precursors produce energy and manage metabolic processes, and will provide insight into novel
methods for engineering competitive self-renewing HSCs through manipulation of metabolism.
项目摘要
几十年来,异基因造血干细胞(HSC)移植的临床结果已经被证实是不稳定的。
受供体匹配的HSC来源的可用性的限制。这促使全球改善了捐助方的工作,
招募和匹配,以及积极寻求新的策略,以开发患者源性或
普遍兼容的造血细胞试图指定人类HSC只产生祖细胞
具有有限的谱系和移植潜力,使用共培养和通过以下方式表达造血基因:
修饰的RNA或病毒整合。
我们的研究表明,由血液流过血管系统引起的生物力学力是一个关键的调节器
并可促进具有长期造血重建潜力的细胞的植入。一
在成体血管内皮细胞中,流体切应力激活了许多特征明确的途径,但
对胚胎发生中生血内皮细胞及其前体细胞内的信号传导知之甚少。我们
初步数据强烈暗示血流的启动是能量代谢的关键决定因素,
HSC前体中的线粒体动力学称为生血内皮。
我们研究的目的是确定由生物力学力触发的信号机制,
明确的造血,长期目标是利用生物物理线索,如剪切应力在定向
用于治疗性移植和血液疾病建模的定制HSC的分化和扩增。
具体地说,我们的目标是确定由血管力诱导的线粒体适应,这些适应促进血管扩张。
通过利用HSC出现和线粒体动力学报告小鼠模型观察生血内皮。
我们将确定线粒体功能,有助于命运选择和生存的细胞与HSC的潜力
使用小鼠胚胎和多能干细胞的分化培养物。我们将审问并定义
细胞内信号传导驱动线粒体重塑以响应流体力的生理强度,
通过药理学和遗传学靶向造血内皮。此外,中断或
增强的线粒体能力将在生血内皮细胞命运选择期间被定义,
成年期,以揭示线粒体动力学如何影响造血程序在其最早阶段,
血管系统这项拟议的研究有望填补我们对新指定的HSC如何
及其前体产生能量并管理代谢过程,并将为新的
通过操纵代谢来工程化竞争性自我更新HSC的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAMELA LYNN WENZEL其他文献
PAMELA LYNN WENZEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAMELA LYNN WENZEL', 18)}}的其他基金
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
10587300 - 财政年份:2018
- 资助金额:
$ 4.35万 - 项目类别:
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
10341105 - 财政年份:2018
- 资助金额:
$ 4.35万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8842626 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8661178 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8296611 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8413091 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8164915 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8460942 - 财政年份:2011
- 资助金额:
$ 4.35万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 4.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




