Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
基本信息
- 批准号:8164915
- 负责人:
- 金额:$ 8.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2012-02-01
- 项目状态:已结题
- 来源:
- 关键词:AblationAdultAdvisory CommitteesAgonistAnemiaAortaBiochemicalBiological AssayBiomechanicsBloodBlood flowBostonCell LineageCell surfaceCellsChildhoodClinicalCritical PathwaysDataDevelopmentDorsalEducational process of instructingEmbryoEmbryonic DevelopmentEndothelial CellsEndotheliumEngraftmentFlow CytometryFrictionGene ExpressionGeneticGenetically Engineered MouseGreen Fluorescent ProteinsHematologic NeoplasmsHematological DiseaseHematologyHematopoiesisHematopoieticHematopoietic Stem Cell TransplantationHematopoietic stem cellsInfectionInternationalLifeLiquid substanceLymphoidMarrowMechanical StressMechanicsMediatingMedical centerMentorsMentorshipMouse StrainsMusNaturePancytopeniaPathway interactionsPatientsPediatric HospitalsPhenotypePlayPopulationPost-Translational Protein ProcessingRegulationReporterResearchResearch DesignResearch InstituteRiskRoleSignal PathwaySignal TransductionSourceStagingStem cellsStressStretchingSyndromeTestingTransplantationUbiquitin CUmbilical Cord BloodVascular EndotheliumWorkbiomechanical engineeringcareerdefined contributionfluid flowgenetic manipulationgraft vs host diseasehemodynamicsinnovationinsightmedical schoolsmimicrymorphogensnotch proteinoncologyperipheral bloodpressureprogramspromoterresponseself-renewalshear stressstem cell biologystem cell therapysuccess
项目摘要
DESCRIPTION (provided by applicant): In the midgestation embryo, blood flow begins after initiation of the heartbeat and subjects vessel walls to viscous friction, pressure, and stretching. These biomechanical forces induce morphological change and activation of differentiation programs not only in endothelial cells but also in hematopoietic cells of the dorsal aorta. The first true hematopoietic stem cells (HSCs) that arise in this region, referred to as the para-aortic splanchnopleura (PSp), are responsible for life-long hematopoiesis of all blood lineages. We have found that fluid frictional force stimulates genetic pathways critical for definitive hematopoiesis and promotes long-term engraftment in adult recipient mice when applied to PSp cells (Nature 2009, 459:1131-1135 and unpublished data). A number of well-characterized pathways are activated by fluid flow in endothelial cells, yet little is known about the signaling pathways that determine hematopoietic fate. The studies proposed herein aim to identify the mechanosensitive genetic signals that are important for hematopoietic specification and expansion. Further, I will test the ability of soluble molecules to mimic the pro-hematopoietic effects of mechanical force. These studies are designed to define the role of biomechanical stress in regulation of hematopoietic potential and promise to inspire innovative approaches for the expansion of transplantable HSCs in culture. Three aims will test the hypothesis that hematopoietic stem cell emergence and expansion is triggered by biomechanically-responsive pathways that can be stimulated by biochemical and pharmacological compounds. Aim 1. Determine the cell surface phenotype(s) of cells that respond to biomechanical forces within the PSp, the embryonic region from which the first definitive HSCs arise. Aim 2. Define and interrogate genetic pathways activated by biomechanical stimulation in hematopoietic precursors from the PSp. Aim 3. Identify pharmacologic compounds and morphogens that promote specification or expansion of HSCs by mimicry of biomechanical forces. Dr. Pamela Wenzel, a postdoctoral research fellow at Children's Hospital Boston (CHB) has outlined a 5- year career plan that will augment and strengthen her background in developmental hematopoiesis and biomechanics. Under the mentorship of Dr. George Daley, a pioneer in the field of stem cell biology, she seeks to identify the genetic mechanisms that sense and respond to biomechanical forces at the earliest stages of definitive hematopoiesis. Dr. Wenzel will be mentored by an Advisory Committee of international leaders in hematopoiesis, biomechanical engineering, and hemodynamics, including Drs. Leonard Zon, Donald Ingber, and Guillermo Garcma-Cardeqa. Finally, the proposed research will be carried out in the Division of Hematology/Oncology at Children's Hospital Boston, the world's largest research institute at a pediatric medical center and the primary pediatric teaching affiliate of Harvard Medical School.
PUBLIC HEALTH RELEVANCE: For several decades, the clinical success of hematopoietic stem cell (HSC) transplantation has been limited by the availability and quality of donor-matched sources of marrow, mobilized peripheral blood, and cord blood. This has led to an urgent need for expansion of transplantable patient-specific or universally compatible hematopoietic cells, and yet efforts to expand the HSC supply ex vivo have been largely unsuccessful to date, resulting in poor self-renewal, skewed multi-lineage potential, and low engraftment efficiencies. The identification of biomechanically activated pathways that promote specification and expansion of hematopoietic cells will broaden our understanding of the various types of signals, soluble and mechanical, that define the hematopoietic niche and, moreover, will advance the field toward establishing alternative, high quality sources of hematopoietic cells that can be used for the treatment of hematologic cancers, anemias, and bone marrow failure syndromes.
描述(由申请人提供):在妊娠中期胚胎中,血流在心跳开始后开始,并使血管壁受到粘性摩擦、压力和拉伸。这些生物力学力不仅在内皮细胞中而且在背主动脉的造血细胞中诱导形态变化和分化程序的激活。第一个真正的造血干细胞(HSC)出现在这个区域,称为腹主动脉旁内脏胸膜(PSp),负责所有血液谱系的终身造血。我们已经发现,当施加到PSp细胞时,流体摩擦力刺激对确定性造血至关重要的遗传途径,并促进成年受体小鼠中的长期植入(Nature 2009,459:1131-1135和未公开的数据)。内皮细胞中的流体流动激活了许多特征明确的通路,但对决定造血命运的信号通路知之甚少。本文提出的研究旨在鉴定对造血特化和扩增重要的机械敏感性遗传信号。此外,我将测试可溶性分子模拟机械力的促造血作用的能力。这些研究旨在确定生物力学应力在造血潜能调节中的作用,并有望激发培养可移植HSC扩增的创新方法。 三个目标将测试造血干细胞的出现和扩增是由生物力学响应途径触发的假设,这些途径可以被生化和药理化合物刺激。目标1.确定对PSp内的生物力学力作出反应的细胞的细胞表面表型,PSp是第一个永久性HSC产生的胚胎区域。目标2.定义和询问由PSp造血前体生物力学刺激激活的遗传途径。目标3.识别通过模拟生物力学力促进HSC特化或扩增的药物化合物和形态发生素。 波士顿儿童医院(CHB)的博士后研究员Pamela Wenzel博士概述了一项5年职业计划,该计划将增强和加强她在发育造血和生物力学方面的背景。在干细胞生物学领域的先驱乔治戴利博士的指导下,她试图确定在最终造血的最早阶段感知和响应生物力学力量的遗传机制。Wenzel博士将由造血、生物力学工程和血液动力学领域的国际领导人组成的咨询委员会指导,其中包括伦纳德Zon博士、Donald Ingber博士和Guillermo Garcma-Cardeqa博士。最后,拟议的研究将在波士顿儿童医院的血液学/肿瘤学部门进行,该部门是世界上最大的儿科医学中心研究所,也是哈佛医学院的主要儿科教学附属机构。
公共卫生关系:几十年来,造血干细胞(HSC)移植的临床成功一直受到骨髓、动员外周血和脐带血供者匹配来源的可用性和质量的限制。这导致了对可移植的患者特异性或普遍相容的造血细胞的扩增的迫切需要,然而,迄今为止,体外扩增HSC供应的努力在很大程度上是不成功的,导致自我更新差、多谱系潜能偏斜和植入效率低。促进造血细胞的特化和扩增的生物力学活化途径的鉴定将拓宽我们对定义造血生态位的各种类型的信号(可溶性和机械性)的理解,并且此外,将推动该领域朝向建立可用于治疗血液癌症、贫血和骨髓衰竭综合征的造血细胞的替代性高质量来源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAMELA LYNN WENZEL其他文献
PAMELA LYNN WENZEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAMELA LYNN WENZEL', 18)}}的其他基金
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
10587300 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
9919750 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
10341105 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8842626 - 财政年份:2011
- 资助金额:
$ 8.13万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8661178 - 财政年份:2011
- 资助金额:
$ 8.13万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8296611 - 财政年份:2011
- 资助金额:
$ 8.13万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8413091 - 财政年份:2011
- 资助金额:
$ 8.13万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8460942 - 财政年份:2011
- 资助金额:
$ 8.13万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 8.13万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




