Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
基本信息
- 批准号:9918990
- 负责人:
- 金额:$ 67.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsAcuteAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAmericanAmyloid beta-ProteinAntibodiesBehaviorBindingBiochemicalBiological AssayBrainBrain DiseasesCaliberCellsClinicalCollaborationsColorCommunicationComplexCultured CellsDataDepositionDevelopmentDimensionsDiseaseElectrophysiology (science)EngineeringExcitatory SynapseExhibitsExtracellular DomainFluorescent DyesFosteringGenerationsGlutamate ReceptorGlutamatesGoalsGrantHippocampus (Brain)ImageImaging TechniquesImaging technologyImmunoglobulin FragmentsImpaired cognitionImpairmentIndividualIntercellular JunctionsLabelLeadLearningLigandsLong-Term DepressionLong-Term PotentiationManuscriptsMediatingMembraneMemoryMemory LossMethodologyMethodsMicroscopyMolecularMusN-Methyl-D-Aspartate ReceptorsN-MethylaspartateNerve DegenerationNeurobiologyNeurologicNeuronsOptical MethodsOpticsPathogenesisPharmaceutical PreparationsPhotonsPositioning AttributeProbabilityProteinsPublishingQuantum DotsRattusResearchResearch PersonnelResolutionSamplingSemiconductorsSenile PlaquesSeriesSignal TransductionSliceSpecificityStreptavidinSynapsesSynaptic TransmissionSynaptic plasticityTechniquesThickTissuesTransgenic OrganismsWild Type MouseWorkabeta oligomeraerobic respiration control proteinbasebrain tissuedirect applicationeffective therapyfluorescence imagingfluorophorehigh resolution imagingimprovedinsightlight microscopymolecular imagingmouse modelnanoparticlenanoscalenew technologynovelnovel therapeutic interventionpreventreceptorsingle moleculetraffickingtransgenic model of alzheimer diseasetwo-photon
项目摘要
PROJECT SUMMARY / ABSTRACT
Alzheimer's disease (AD) afflicts more than 5 million Americans, yet no known drug is able to prevent or stop
the disease. Before AD fully develops with insoluble amyloid-β plaque deposits and neurodegeneration, there is
a progressive cognitive decline associated with the impairment of synaptic plasticity that underlies learning and
memory. This abnormal synaptic plasticity is likely caused by soluble amyloid-β oligomers affecting the synaptic
levels of AMPA and NMDA receptors, two glutamatergic receptors that mediate induction and expression of
synaptic plasticity. However, the underlying detailed mechanisms are not known and are exceptionally
challenging to study due to the complex behavior of these receptors and the small nanometer-scale dimensions
of the synaptic domains in which they reside.
The goal of this proposal is to understand the molecular details of abnormal synaptic plasticity present in early
AD by developing small nanoparticle-based optical probes and new microscopy techniques to analyze the
position and dynamics of AMPA and NMDA receptors in normal and AD brains. This goal will be accomplished
through the individual and collective efforts of three principle investigators, Paul Selvin (microscopy), Andrew
Smith (quantum dots) and Hee Jung Chung (neurobiology). They have previously worked as a team to publish
two manuscripts on generating small quantum dots (sQD) (< 10 nm diameter) that can enter the neuronal
synapse and accurately follow the receptor number and dynamic placement in dissociated cultured neurons.
To achieve this goal, Aim 1 will optimize super-resolution imaging techniques for sQDs in dissociated
hippocampal culture and thick hippocampal slices with intact circuitry, specifically focusing on 1- and 2-photon
excitation with FIONA and PALM/STORM microscopy. This will allow < 20 nm resolution in all three dimensions.
Aim 2 will develop a novel set of sQDs that are smaller, stable, and monovalent with minimal non-specific
interaction with tissue. Aim 3 will apply sQDs and super-resolution optical methods to perform single-molecule
imaging of glutamate receptors during synaptic plasticity in hippocampal culture and acute slices from wild-type
and AD transgenic model mice. Because of our on-going successful collaboration, we are able to work with the
AD model immediately, while new microscopy and quantum dots are being generated. This research will
increase our understanding of the early pathogenesis of AD and therefore foster the development of new
therapeutic strategies that could specifically inhibit the progression of cognitive decline of this disease.
项目概要/摘要
阿尔茨海默病 (AD) 困扰着超过 500 万美国人,但尚无已知药物能够预防或阻止
这种疾病。在 AD 完全发展为不溶性 β 淀粉样蛋白斑块沉积和神经变性之前,
与突触可塑性受损相关的渐进性认知能力下降,而突触可塑性是学习和学习的基础
记忆。这种异常的突触可塑性可能是由影响突触的可溶性淀粉样蛋白-β寡聚体引起的
AMPA 和 NMDA 受体的水平,这两种谷氨酸能受体介导诱导和表达
突触可塑性。然而,潜在的详细机制尚不清楚,而且异常
由于这些受体的复杂行为和较小的纳米级尺寸,研究具有挑战性
它们所在的突触域。
该提案的目的是了解早期突触可塑性异常的分子细节。
AD 通过开发基于小型纳米粒子的光学探针和新的显微镜技术来分析
正常和 AD 大脑中 AMPA 和 NMDA 受体的位置和动态。这个目标将会实现
通过三位主要研究者的个人和集体努力,Paul Selvin(显微镜)、Andrew
史密斯(量子点)和郑熙正(神经生物学)。他们之前曾作为一个团队合作出版
两篇关于生成可以进入神经元的小量子点(sQD)(< 10 nm 直径)的手稿
突触并准确跟踪分离的培养神经元中的受体数量和动态位置。
为了实现这一目标,目标 1 将优化解离中的 sQD 超分辨率成像技术
海马培养物和具有完整电路的厚海马切片,特别关注 1 和 2 光子
FIONA 和 PALM/STORM 显微镜激发。这将在所有三个维度上实现 < 20 nm 的分辨率。
目标 2 将开发一组新颖的 sQD,这些 sQD 更小、稳定、单价,非特异性最少
与组织的相互作用。 Aim 3将应用sQD和超分辨率光学方法进行单分子研究
海马培养物和野生型急性切片中突触可塑性过程中谷氨酸受体的成像
和AD转基因模型小鼠。由于我们持续的成功合作,我们能够与
立即进行 AD 模型,同时正在生成新的显微镜和量子点。这项研究将
增加我们对 AD 早期发病机制的了解,从而促进新疗法的开发
可以特异性抑制这种疾病认知能力下降进展的治疗策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Labeling of a mutant estrogen receptor with an Affimer in a breast cancer cell line.
在乳腺癌细胞系中用仿射体标记突变雌激素受体。
- DOI:10.1016/j.bpj.2022.06.028
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Ren,Pin;Tiede,Christian;Fanning,SeanW;Adams,Thomas;Speirs,Valerie;Nelson,ErikR;Cheng,Changfeng;Moore,TerryW;Greene,GeoffreyL;Tomlinson,Darren;Selvin,PaulR
- 通讯作者:Selvin,PaulR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hee Jung Chung其他文献
Hee Jung Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hee Jung Chung', 18)}}的其他基金
Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
- 批准号:
10729062 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10467027 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9975253 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10299205 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9384063 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10684709 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9160604 - 财政年份:2016
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9478382 - 财政年份:2016
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9274105 - 财政年份:2016
- 资助金额:
$ 67.41万 - 项目类别:
相似海外基金
Role of PSD-95-linked PDE4A5 in Regulation of AMPA Receptors
PSD-95 连接的 PDE4A5 在 AMPA 受体调节中的作用
- 批准号:
10829146 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2022
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
In vivo Probe for ionotropic glutamate signaling system: AMPA receptors
离子型谷氨酸信号系统体内探针:AMPA 受体
- 批准号:
10584340 - 财政年份:2022
- 资助金额:
$ 67.41万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2021
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2020
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
Binding of Endophilin Endocytic Proteins to AMPA Receptors and Neuronal Voltage-gated Potassium (Kv) Channels: Regulation of Synaptic Plasticity
内亲素内吞蛋白与 AMPA 受体和神经元电压门控钾 (Kv) 通道的结合:突触可塑性的调节
- 批准号:
RGPIN-2015-03850 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
The missing link: Opioid modulation of AMPA receptors
缺失的环节:阿片类药物对 AMPA 受体的调节
- 批准号:
2253144 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Studentship
Calcium-permeable AMPA receptors and their auxiliary subunits: pharmacological and molecular intervention in health and disease
钙渗透性 AMPA 受体及其辅助亚基:健康和疾病的药理学和分子干预
- 批准号:
MR/T002506/1 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Research Grant
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
Life cycle of AMPA receptors under acute metabolic stress
急性代谢应激下 AMPA 受体的生命周期
- 批准号:
411538084 - 财政年份:2018
- 资助金额:
$ 67.41万 - 项目类别:
Research Units














{{item.name}}会员




