Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
基本信息
- 批准号:9918990
- 负责人:
- 金额:$ 67.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsAcuteAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAmericanAmyloid beta-ProteinAntibodiesBehaviorBindingBiochemicalBiological AssayBrainBrain DiseasesCaliberCellsClinicalCollaborationsColorCommunicationComplexCultured CellsDataDepositionDevelopmentDimensionsDiseaseElectrophysiology (science)EngineeringExcitatory SynapseExhibitsExtracellular DomainFluorescent DyesFosteringGenerationsGlutamate ReceptorGlutamatesGoalsGrantHippocampus (Brain)ImageImaging TechniquesImaging technologyImmunoglobulin FragmentsImpaired cognitionImpairmentIndividualIntercellular JunctionsLabelLeadLearningLigandsLong-Term DepressionLong-Term PotentiationManuscriptsMediatingMembraneMemoryMemory LossMethodologyMethodsMicroscopyMolecularMusN-Methyl-D-Aspartate ReceptorsN-MethylaspartateNerve DegenerationNeurobiologyNeurologicNeuronsOptical MethodsOpticsPathogenesisPharmaceutical PreparationsPhotonsPositioning AttributeProbabilityProteinsPublishingQuantum DotsRattusResearchResearch PersonnelResolutionSamplingSemiconductorsSenile PlaquesSeriesSignal TransductionSliceSpecificityStreptavidinSynapsesSynaptic TransmissionSynaptic plasticityTechniquesThickTissuesTransgenic OrganismsWild Type MouseWorkabeta oligomeraerobic respiration control proteinbasebrain tissuedirect applicationeffective therapyfluorescence imagingfluorophorehigh resolution imagingimprovedinsightlight microscopymolecular imagingmouse modelnanoparticlenanoscalenew technologynovelnovel therapeutic interventionpreventreceptorsingle moleculetraffickingtransgenic model of alzheimer diseasetwo-photon
项目摘要
PROJECT SUMMARY / ABSTRACT
Alzheimer's disease (AD) afflicts more than 5 million Americans, yet no known drug is able to prevent or stop
the disease. Before AD fully develops with insoluble amyloid-β plaque deposits and neurodegeneration, there is
a progressive cognitive decline associated with the impairment of synaptic plasticity that underlies learning and
memory. This abnormal synaptic plasticity is likely caused by soluble amyloid-β oligomers affecting the synaptic
levels of AMPA and NMDA receptors, two glutamatergic receptors that mediate induction and expression of
synaptic plasticity. However, the underlying detailed mechanisms are not known and are exceptionally
challenging to study due to the complex behavior of these receptors and the small nanometer-scale dimensions
of the synaptic domains in which they reside.
The goal of this proposal is to understand the molecular details of abnormal synaptic plasticity present in early
AD by developing small nanoparticle-based optical probes and new microscopy techniques to analyze the
position and dynamics of AMPA and NMDA receptors in normal and AD brains. This goal will be accomplished
through the individual and collective efforts of three principle investigators, Paul Selvin (microscopy), Andrew
Smith (quantum dots) and Hee Jung Chung (neurobiology). They have previously worked as a team to publish
two manuscripts on generating small quantum dots (sQD) (< 10 nm diameter) that can enter the neuronal
synapse and accurately follow the receptor number and dynamic placement in dissociated cultured neurons.
To achieve this goal, Aim 1 will optimize super-resolution imaging techniques for sQDs in dissociated
hippocampal culture and thick hippocampal slices with intact circuitry, specifically focusing on 1- and 2-photon
excitation with FIONA and PALM/STORM microscopy. This will allow < 20 nm resolution in all three dimensions.
Aim 2 will develop a novel set of sQDs that are smaller, stable, and monovalent with minimal non-specific
interaction with tissue. Aim 3 will apply sQDs and super-resolution optical methods to perform single-molecule
imaging of glutamate receptors during synaptic plasticity in hippocampal culture and acute slices from wild-type
and AD transgenic model mice. Because of our on-going successful collaboration, we are able to work with the
AD model immediately, while new microscopy and quantum dots are being generated. This research will
increase our understanding of the early pathogenesis of AD and therefore foster the development of new
therapeutic strategies that could specifically inhibit the progression of cognitive decline of this disease.
项目总结/摘要
阿尔茨海默病(AD)困扰着500多万美国人,但没有已知的药物能够预防或停止
这种疾病在AD完全发展为不溶性淀粉样蛋白-β斑块沉积和神经变性之前,
一种与作为学习基础的突触可塑性受损相关的进行性认知衰退,
记忆这种异常的突触可塑性可能是由可溶性β淀粉样蛋白寡聚体影响突触可塑性引起的。
AMPA和NMDA受体的水平,两种介导诱导和表达的谷氨酸能受体,
突触可塑性然而,其潜在的详细机制尚不清楚,
由于这些受体的复杂行为和纳米尺度的小尺寸,
它们所处的突触区域。
这项建议的目标是了解早期脑缺血中异常突触可塑性的分子细节,
AD通过开发基于小纳米颗粒的光学探针和新的显微镜技术来分析
AMPA和NMDA受体在正常和AD脑中的位置和动力学。这一目标将得以实现
通过三位主要研究人员的个人和集体努力,保罗·塞尔文(显微镜),安德鲁·
Smith(量子点)和Hee Jung Chung(神经生物学)。他们之前曾作为团队合作发布
两篇关于产生可以进入神经元的小量子点(sQD)(直径< 10 nm)的手稿
突触,并准确地跟踪受体数量和动态放置在分离培养的神经元。
为了实现这一目标,Aim 1将优化用于解离的sQD的超分辨率成像技术。
海马培养物和具有完整电路的厚海马切片,特别关注1-和2-光子
激发与FIONA和PALM/STORM显微镜。这将允许在所有三个维度上的< 20 nm分辨率。
目标2将开发一组新的sQD,它们更小,稳定,单价,具有最小的非特异性
与组织的相互作用。目标3将应用量子点和超分辨光学方法进行单分子
海马培养物和野生型急性切片中突触可塑性过程中谷氨酸受体的成像
和AD转基因模型小鼠。由于我们正在进行的成功合作,我们能够与
AD模型,而新的显微镜和量子点正在生成。这项研究将
增加我们对AD早期发病机制的了解,从而促进新的
可以特异性抑制这种疾病的认知下降的进展的治疗策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Labeling of a mutant estrogen receptor with an Affimer in a breast cancer cell line.
在乳腺癌细胞系中用仿射体标记突变雌激素受体。
- DOI:10.1016/j.bpj.2022.06.028
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Ren,Pin;Tiede,Christian;Fanning,SeanW;Adams,Thomas;Speirs,Valerie;Nelson,ErikR;Cheng,Changfeng;Moore,TerryW;Greene,GeoffreyL;Tomlinson,Darren;Selvin,PaulR
- 通讯作者:Selvin,PaulR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hee Jung Chung其他文献
Hee Jung Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hee Jung Chung', 18)}}的其他基金
Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
- 批准号:
10729062 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10467027 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9975253 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10299205 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9384063 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10684709 - 财政年份:2017
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9160604 - 财政年份:2016
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9478382 - 财政年份:2016
- 资助金额:
$ 67.41万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9274105 - 财政年份:2016
- 资助金额:
$ 67.41万 - 项目类别:
相似海外基金
Role of PSD-95-linked PDE4A5 in Regulation of AMPA Receptors
PSD-95 连接的 PDE4A5 在 AMPA 受体调节中的作用
- 批准号:
10829146 - 财政年份:2023
- 资助金额:
$ 67.41万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2022
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
In vivo Probe for ionotropic glutamate signaling system: AMPA receptors
离子型谷氨酸信号系统体内探针:AMPA 受体
- 批准号:
10584340 - 财政年份:2022
- 资助金额:
$ 67.41万 - 项目类别:
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2021
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2020
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
Binding of Endophilin Endocytic Proteins to AMPA Receptors and Neuronal Voltage-gated Potassium (Kv) Channels: Regulation of Synaptic Plasticity
内亲素内吞蛋白与 AMPA 受体和神经元电压门控钾 (Kv) 通道的结合:突触可塑性的调节
- 批准号:
RGPIN-2015-03850 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
The missing link: Opioid modulation of AMPA receptors
缺失的环节:阿片类药物对 AMPA 受体的调节
- 批准号:
2253144 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Studentship
Calcium-permeable AMPA receptors and their auxiliary subunits: pharmacological and molecular intervention in health and disease
钙渗透性 AMPA 受体及其辅助亚基:健康和疾病的药理学和分子干预
- 批准号:
MR/T002506/1 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Research Grant
The role of AMPA receptors in critical period plasticity in the auditory cortex
AMPA 受体在听觉皮层关键期可塑性中的作用
- 批准号:
RGPIN-2018-06552 - 财政年份:2019
- 资助金额:
$ 67.41万 - 项目类别:
Discovery Grants Program - Individual
Life cycle of AMPA receptors under acute metabolic stress
急性代谢应激下 AMPA 受体的生命周期
- 批准号:
411538084 - 财政年份:2018
- 资助金额:
$ 67.41万 - 项目类别:
Research Units














{{item.name}}会员




