Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease

小量子点的超分辨率显微镜阐明阿尔茨海默病的机制

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT Alzheimer's disease (AD) afflicts more than 5 million Americans, yet no known drug is able to prevent or stop the disease. Before AD fully develops with insoluble amyloid-β plaque deposits and neurodegeneration, there is a progressive cognitive decline associated with the impairment of synaptic plasticity that underlies learning and memory. This abnormal synaptic plasticity is likely caused by soluble amyloid-β oligomers affecting the synaptic levels of AMPA and NMDA receptors, two glutamatergic receptors that mediate induction and expression of synaptic plasticity. However, the underlying detailed mechanisms are not known and are exceptionally challenging to study due to the complex behavior of these receptors and the small nanometer-scale dimensions of the synaptic domains in which they reside. The goal of this proposal is to understand the molecular details of abnormal synaptic plasticity present in early AD by developing small nanoparticle-based optical probes and new microscopy techniques to analyze the position and dynamics of AMPA and NMDA receptors in normal and AD brains. This goal will be accomplished through the individual and collective efforts of three principle investigators, Paul Selvin (microscopy), Andrew Smith (quantum dots) and Hee Jung Chung (neurobiology). They have previously worked as a team to publish two manuscripts on generating small quantum dots (sQD) (< 10 nm diameter) that can enter the neuronal synapse and accurately follow the receptor number and dynamic placement in dissociated cultured neurons. To achieve this goal, Aim 1 will optimize super-resolution imaging techniques for sQDs in dissociated hippocampal culture and thick hippocampal slices with intact circuitry, specifically focusing on 1- and 2-photon excitation with FIONA and PALM/STORM microscopy. This will allow < 20 nm resolution in all three dimensions. Aim 2 will develop a novel set of sQDs that are smaller, stable, and monovalent with minimal non-specific interaction with tissue. Aim 3 will apply sQDs and super-resolution optical methods to perform single-molecule imaging of glutamate receptors during synaptic plasticity in hippocampal culture and acute slices from wild-type and AD transgenic model mice. Because of our on-going successful collaboration, we are able to work with the AD model immediately, while new microscopy and quantum dots are being generated. This research will increase our understanding of the early pathogenesis of AD and therefore foster the development of new therapeutic strategies that could specifically inhibit the progression of cognitive decline of this disease.
项目总结/摘要 阿尔茨海默病(AD)困扰着500多万美国人,但没有已知的药物能够预防或停止 这种疾病在AD完全发展为不溶性淀粉样蛋白-β斑块沉积和神经变性之前, 一种与作为学习基础的突触可塑性受损相关的进行性认知衰退, 记忆这种异常的突触可塑性可能是由可溶性β淀粉样蛋白寡聚体影响突触可塑性引起的。 AMPA和NMDA受体的水平,两种介导诱导和表达的谷氨酸能受体, 突触可塑性然而,其潜在的详细机制尚不清楚, 由于这些受体的复杂行为和纳米尺度的小尺寸, 它们所处的突触区域。 这项建议的目标是了解早期脑缺血中异常突触可塑性的分子细节, AD通过开发基于小纳米颗粒的光学探针和新的显微镜技术来分析 AMPA和NMDA受体在正常和AD脑中的位置和动力学。这一目标将得以实现 通过三位主要研究人员的个人和集体努力,保罗·塞尔文(显微镜),安德鲁· Smith(量子点)和Hee Jung Chung(神经生物学)。他们之前曾作为团队合作发布 两篇关于产生可以进入神经元的小量子点(sQD)(直径< 10 nm)的手稿 突触,并准确地跟踪受体数量和动态放置在分离培养的神经元。 为了实现这一目标,Aim 1将优化用于解离的sQD的超分辨率成像技术。 海马培养物和具有完整电路的厚海马切片,特别关注1-和2-光子 激发与FIONA和PALM/STORM显微镜。这将允许在所有三个维度上的< 20 nm分辨率。 目标2将开发一组新的sQD,它们更小,稳定,单价,具有最小的非特异性 与组织的相互作用。目标3将应用量子点和超分辨光学方法进行单分子 海马培养物和野生型急性切片中突触可塑性过程中谷氨酸受体的成像 和AD转基因模型小鼠。由于我们正在进行的成功合作,我们能够与 AD模型,而新的显微镜和量子点正在生成。这项研究将 增加我们对AD早期发病机制的了解,从而促进新的 可以特异性抑制这种疾病的认知下降的进展的治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hee Jung Chung其他文献

Hee Jung Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hee Jung Chung', 18)}}的其他基金

Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
  • 批准号:
    10729062
  • 财政年份:
    2023
  • 资助金额:
    $ 54.11万
  • 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10467027
  • 财政年份:
    2017
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    9975253
  • 财政年份:
    2017
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10299205
  • 财政年份:
    2017
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    9384063
  • 财政年份:
    2017
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10684709
  • 财政年份:
    2017
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9918990
  • 财政年份:
    2016
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9478382
  • 财政年份:
    2016
  • 资助金额:
    $ 54.11万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9274105
  • 财政年份:
    2016
  • 资助金额:
    $ 54.11万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 54.11万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了