Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
基本信息
- 批准号:10684709
- 负责人:
- 金额:$ 37.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseAvidinBindingBiological SciencesCell membraneCellsChemicalsClinicalColorCommunicationCross-Linking ReagentsDNADNA ProbesDiameterDiffusionDisadvantagedDissociationDyesEventEvolutionFluorescenceFluorescence MicroscopyFutureGlutamate ReceptorGrantHippocampusHomer 1ImageImaging DeviceIndividualLabelLateralLearningLengthLigandsLong-Term PotentiationMaintenanceMeasurementMeasuresMemoryMethodsMicroscopyMolecularN-MethylaspartateNMDA receptor A1Neurodegenerative DisordersNeurodevelopmental DisorderNeuronsNeurosciencesNeurotransmitter ReceptorParkinson DiseasePhasePhysiologicalPositioning AttributeProcessProteinsQuantum DotsResolutionSiteSpeedStructureSulfhydryl CompoundsSurfaceSynapsesSynaptic CleftSystemTechniquesTechnologyTestingThinnessTimeVisualizationcrosslinkdensitydimerexperimental studyfacsimilefluorophoreimagerimprovedinnovationmonomernanonanobodiesnanometerpostsynapticpostsynaptic density proteinpresynapticpresynaptic density protein 95receptorresponsesingle moleculestoichiometrysuperresolution microscopytemporal measurementtooltraffickingultra high resolution
项目摘要
Significance: The ability to measure the molecular mechanisms of neuronal communication at the nanometer
spatial scale will have enormous impact on basic bioscience and likely to future clinical neuroscience. In
particular, AMPA- and NMDA-type glutamate receptors (known as iGluRs) are dynamically involved in neuron-
to-neuron communication across the thin (≈30 nm) synapse; when dysregulated, neurodegenerative diseases
result, such as Alzheimer’s and Parkinson’s diseases. We—and others—have tracked these events with
nanometric resolution using super-resolution fluorescence microscopy (SRFM). Using small probes—quantum
dots (≈12 nm diameter) and other photostable fluorophores, developed in our lab in the preceding grant—we
came up with some surprises. We find that a large fraction of the AMPARs reside in the synapse where their
mobility is restricted; during long-term-potentiation (LTP, a molecular underpinning of memory formation), we’ve
quantified their numbers and find during their maintenance phase that their lateral diffusion is rare; NMDARs
have extra-synaptic nanodomains which may keep their numbers from rising during LTP. But are these, and
other results, correct? To validate these preliminary results, we will measure the placement and diffusion of the
iGluRs, primarily AMPARs, using three different SRFM techniques, each one having its own advantages and
disadvantages. We will also determine the 3D-orientation of the synapse, the effect of probe size and type, the
details of LTP activation, and quantitatively determine the number of iGluRs at each synapse. The results
between the three techniques will be compared.
Innovation: Each SRFM technique has new aspects, particularly with respect to neuroscience. First, we will
improve the PALM/STORM technique (one type of SRFM) to test the distribution and dynamics of iGluRs more
accurately. We will use new probes—nanobodies and scFv’s—against post-synaptic proteins and iGluRs, and
test new sQDs and new cross-linking reagents against iGluRs. We will also determine the orientation and position
of the synaptic zone by labeling neuroligin and various presynaptic proteins, such as Bassoon and RIM1/2, first
under basal conditions and then with chemical LTP (cLTP). Second, we will use and develop PAINT, another
form of SRFM, which has recently been shown to have a 100× increase in speed with excellent spatial
resolution—≈5 nanometers in 0.2 sec. We will show that quantitative-PAINT can be applied to fixed neurons
and can be used to measure cLTP on an individual synapse. And for the first time, we will apply PAINT to a living
neuron under physiological conditions to measure AMPAR dynamics. With PAINT, we will be able to test how
many iGluRs there are per synapse, whether they are synaptic or extra-synaptic, and how the number of iGluRs
change with cLTP. Third, we will utilize a fluorogenic activating protein (FAP) with iGluRs and show that the
number of receptors can be measured in living neurons with nanometric resolution, no background, and
potentially fast response to cLTP. This method will therefore provide another test of iGluR structure & dynamics.
意义:能够在纳米水平上测量神经元通讯的分子机制
空间尺度将对基础生物科学产生巨大影响,并可能对未来的临床神经科学产生巨大影响。在
特别地,AMPA-和NMDA-型谷氨酸受体(称为iGluRs)动态地参与神经元-
通过薄(约30 nm)突触的神经元通信;当失调时,神经退行性疾病
结果,如阿尔茨海默氏症和帕金森氏症。我们和其他人一直在跟踪这些事件,
纳米分辨率使用超分辨率荧光显微镜(SRFM)。使用小探针-量子
点(直径约12纳米)和其他光稳定的荧光团,在我们的实验室开发的前赠款,我们
带来了一些惊喜我们发现大部分AMPAR位于突触中,
在长时程增强(LTP,记忆形成的分子基础)过程中,
量化了它们的数量,并发现在维持阶段它们的横向扩散很少见; NMDAR
具有突触外纳米结构域,这可能会阻止它们的数量在LTP期间上升。但这些,
其他结果,对吗?为了验证这些初步的结果,我们将测量的位置和扩散的
iGluR,主要是AMPAR,使用三种不同的SRFM技术,每一种都有自己的优点,
缺点我们还将确定突触的3D方向,探针大小和类型的影响,
LTP激活的细节,并定量确定每个突触处iGluR的数量。结果
这三种技术将进行比较。
创新:每种SRFM技术都有新的方面,特别是在神经科学方面。一是
改进PALM/STORM技术(SRFM的一种),以进一步检测iGluRs的分布和动态
准确地我们将使用针对突触后蛋白和iGluRs的新探针-纳米抗体和scFv,
针对iGluR测试新的sQD和新的交联试剂。我们还将确定方向和位置
首先,通过标记神经连接素和各种突触前蛋白,如巴松管和RIM 1/2,
在基础条件下,然后用化学LTP(cLTP)。其次,我们将使用和开发PAINT,另一个
SRFM的一种形式,最近已被证明具有100倍的速度增加,具有良好的空间
分辨率-在0.2秒内达到105纳米。我们将表明,定量PAINT可以应用于固定的神经元
并可用于测量单个突触上的cLTP。我们将第一次将油漆应用于
神经元在生理条件下测量AMPAR动力学。通过PAINT,我们将能够测试如何
每个突触都有许多iGluR,无论它们是突触还是突触外的,以及iGluR的数量如何
改变cLTP第三,我们将利用荧光激活蛋白(FAP)与iGluRs,并表明,
受体的数量可以在活体神经元中以纳米分辨率测量,没有背景,
对cLTP的潜在快速响应。因此,该方法将提供iGluR结构和动力学的另一种测试。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses
- DOI:10.3389/fnmol.2020.00010
- 发表时间:2020-03-13
- 期刊:
- 影响因子:4.8
- 作者:Delgado, Jary Y.;Nall, Duncan;Selvin, Paul R.
- 通讯作者:Selvin, Paul R.
A Revised View on the Role of Surface AMPAR Mobility in Tuning Synaptic Transmission: Limitations, Tools, and Alternative Views.
- DOI:10.3389/fnsyn.2018.00021
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Delgado JY;Selvin PR
- 通讯作者:Selvin PR
Synapses without tension fail to fire in an in vitro network of hippocampal neurons
- DOI:10.1073/pnas.2311995120
- 发表时间:2023-12-26
- 期刊:
- 影响因子:11.1
- 作者:Joy,Md Saddam Hossain;Nall,Duncan L.;Saif,M. Taher A.
- 通讯作者:Saif,M. Taher A.
Super-resolution imaging of synaptic and Extra-synaptic AMPA receptors with different-sized fluorescent probes.
具有不同尺寸荧光探针的突触和突触外AMPA受体的超分辨率成像。
- DOI:10.7554/elife.27744
- 发表时间:2017-07-27
- 期刊:
- 影响因子:7.7
- 作者:Lee SH;Jin C;Cai E;Ge P;Ishitsuka Y;Teng KW;de Thomaz AA;Nall D;Baday M;Jeyifous O;Demonte D;Dundas CM;Park S;Delgado JY;Green WN;Selvin PR
- 通讯作者:Selvin PR
Structural Contributions to Hydrodynamic Diameter for Quantum Dots Optimized for Live-Cell Single-Molecule Tracking.
针对活细胞单分子跟踪优化的量子点的流体动力学直径的结构贡献。
- DOI:10.1021/acs.jpcc.8b02516
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Sheung,JanetY;Ge,Pinghua;Lim,SungJun;Lee,SangHak;Smith,AndrewM;Selvin,PaulR
- 通讯作者:Selvin,PaulR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hee Jung Chung其他文献
Hee Jung Chung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hee Jung Chung', 18)}}的其他基金
Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
- 批准号:
10729062 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10467027 - 财政年份:2017
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9975253 - 财政年份:2017
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
10299205 - 财政年份:2017
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
- 批准号:
9384063 - 财政年份:2017
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9160604 - 财政年份:2016
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9918990 - 财政年份:2016
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9478382 - 财政年份:2016
- 资助金额:
$ 37.68万 - 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
- 批准号:
9274105 - 财政年份:2016
- 资助金额:
$ 37.68万 - 项目类别:














{{item.name}}会员




