Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools

使用先进成像工具对神经元突触进行超分辨率显微镜检查

基本信息

项目摘要

Significance: The ability to measure the molecular mechanisms of neuronal communication at the nanometer spatial scale will have enormous impact on basic bioscience and likely to future clinical neuroscience. In particular, AMPA- and NMDA-type glutamate receptors (known as iGluRs) are dynamically involved in neuron- to-neuron communication across the thin (≈30 nm) synapse; when dysregulated, neurodegenerative diseases result, such as Alzheimer’s and Parkinson’s diseases. We—and others—have tracked these events with nanometric resolution using super-resolution fluorescence microscopy (SRFM). Using small probes—quantum dots (≈12 nm diameter) and other photostable fluorophores, developed in our lab in the preceding grant—we came up with some surprises. We find that a large fraction of the AMPARs reside in the synapse where their mobility is restricted; during long-term-potentiation (LTP, a molecular underpinning of memory formation), we’ve quantified their numbers and find during their maintenance phase that their lateral diffusion is rare; NMDARs have extra-synaptic nanodomains which may keep their numbers from rising during LTP. But are these, and other results, correct? To validate these preliminary results, we will measure the placement and diffusion of the iGluRs, primarily AMPARs, using three different SRFM techniques, each one having its own advantages and disadvantages. We will also determine the 3D-orientation of the synapse, the effect of probe size and type, the details of LTP activation, and quantitatively determine the number of iGluRs at each synapse. The results between the three techniques will be compared. Innovation: Each SRFM technique has new aspects, particularly with respect to neuroscience. First, we will improve the PALM/STORM technique (one type of SRFM) to test the distribution and dynamics of iGluRs more accurately. We will use new probes—nanobodies and scFv’s—against post-synaptic proteins and iGluRs, and test new sQDs and new cross-linking reagents against iGluRs. We will also determine the orientation and position of the synaptic zone by labeling neuroligin and various presynaptic proteins, such as Bassoon and RIM1/2, first under basal conditions and then with chemical LTP (cLTP). Second, we will use and develop PAINT, another form of SRFM, which has recently been shown to have a 100× increase in speed with excellent spatial resolution—≈5 nanometers in 0.2 sec. We will show that quantitative-PAINT can be applied to fixed neurons and can be used to measure cLTP on an individual synapse. And for the first time, we will apply PAINT to a living neuron under physiological conditions to measure AMPAR dynamics. With PAINT, we will be able to test how many iGluRs there are per synapse, whether they are synaptic or extra-synaptic, and how the number of iGluRs change with cLTP. Third, we will utilize a fluorogenic activating protein (FAP) with iGluRs and show that the number of receptors can be measured in living neurons with nanometric resolution, no background, and potentially fast response to cLTP. This method will therefore provide another test of iGluR structure & dynamics.
意义:测量纳米分子通信的分子机制的能力 空间量表将对基本的生物科学和未来的临床神经科学产生巨大影响。在 特别是,AMPA和NMDA型谷氨酸受体(称为iGlurs)动态参与神经元 横跨薄(≈30nm)突触的通信;失调时神经退行性疾病 结果,例如阿尔茨海默氏症和帕金森氏病。我们以及其他人 - 与 使用超分辨率荧光显微镜(SRFM)的纳米分辨率。使用小问题 - 量子 点(≈12nm的直径)和其他光稳定荧光团,在我们的实验室中开发的先前赠款 - 我们 提出了一些惊喜。我们发现,很大一部分AMPAR位于他们的突触中 流动性受到限制;在长期训练期间(LTP,记忆形成的分子基础),我们已经 量化其数量并在维护阶段发现其横向扩散很少见; NMDARS 具有突触外纳米域,可以防止其数量在LTP期间增加。但是这些是 其他结果,对吗?为了验证这些初步结果,我们将衡量的位置和扩散 iglurs,主要AMPAR,使用三种不同的SRFM技术,每种技术都有其自己的优势 缺点。我们还将确定突触的3D方向方法,探针大小和类型的效果, LTP激活的细节,并定量确定每个突触处的iGlurs数量。结果 将比较这三种技术之间。 创新:每种SRFM技术都有新的方面,尤其是在神经科学方面。首先,我们会的 改进棕榈/风暴技术(一种类型的SRFM),以更多地测试iGlurs的分布和动力学 准确。我们将使用新的问题(纳米动物和scfv),使后突触后蛋白质和iGlurs,以及 测试针对iGlurs的新SQD和新的交联试剂。我们还将确定方向和位置 通过标记神经素和各种突触前蛋白(例如低音和RIM1/2)的标记,首先是合成区域 在基本条件下,然后使用化学LTP(CLTP)。其次,我们将使用和开发油漆,另一个 SRFM的形式,最近已证明其速度有100倍,具有出色的空间 分辨率 - ≈5纳米在0.2秒内。我们将证明可以将定量涂片应用于固定的神经元 并且可用于测量单个突触上的CLTP。这是我们第一次将油漆涂在谋生 在生理条件下的神经元测量AMPAR动力学。使用油漆,我们将能够测试 许多iglurs都有每次突触,无论是突触还是突触外的,以及iglurs的数量 用CLTP更改。第三,我们将使用iGlurs利用荧光激活蛋白(FAP),并表明 可以在具有纳米分辨率的活神经元中测量接收器的数量,没有背景,并且 可能对CLTP的快速响应。因此,该方法将提供iGlur结构和动力学的另一项测试。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pin1 Binding to Phosphorylated PSD-95 Regulates the Number of Functional Excitatory Synapses
  • DOI:
    10.3389/fnmol.2020.00010
  • 发表时间:
    2020-03-13
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Delgado, Jary Y.;Nall, Duncan;Selvin, Paul R.
  • 通讯作者:
    Selvin, Paul R.
A Revised View on the Role of Surface AMPAR Mobility in Tuning Synaptic Transmission: Limitations, Tools, and Alternative Views.
Synapses without tension fail to fire in an in vitro network of hippocampal neurons
Super-resolution imaging of synaptic and Extra-synaptic AMPA receptors with different-sized fluorescent probes.
  • DOI:
    10.7554/elife.27744
  • 发表时间:
    2017-07-27
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Lee SH;Jin C;Cai E;Ge P;Ishitsuka Y;Teng KW;de Thomaz AA;Nall D;Baday M;Jeyifous O;Demonte D;Dundas CM;Park S;Delgado JY;Green WN;Selvin PR
  • 通讯作者:
    Selvin PR
Structural Contributions to Hydrodynamic Diameter for Quantum Dots Optimized for Live-Cell Single-Molecule Tracking.
针对活细胞单分子跟踪优化的量子点的流体动力学直径的结构贡献。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hee Jung Chung其他文献

Hee Jung Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hee Jung Chung', 18)}}的其他基金

Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
  • 批准号:
    10729062
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10467027
  • 财政年份:
    2017
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    9975253
  • 财政年份:
    2017
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Advanced Imaging Tools
使用先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    10299205
  • 财政年份:
    2017
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Neuronal Synapses with Small Quantum Dots and Advanced Imaging Tools
使用小量子点和先进成像工具对神经元突触进行超分辨率显微镜检查
  • 批准号:
    9384063
  • 财政年份:
    2017
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9160604
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9918990
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9478382
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
  • 项目类别:
Super-Resolution Microscopy of Small Quantum Dots to Elucidate the Mechanisms of Alzheimer's Disease
小量子点的超分辨率显微镜阐明阿尔茨海默病的机制
  • 批准号:
    9274105
  • 财政年份:
    2016
  • 资助金额:
    $ 37.68万
  • 项目类别:

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
  • 批准号:
    10555896
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
  • 批准号:
    10555899
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
  • 批准号:
    10645610
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    $ 37.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了