DNA Sequencing with novel 2D FET-nanopore devices
使用新型 2D FET 纳米孔器件进行 DNA 测序
基本信息
- 批准号:9920755
- 负责人:
- 金额:$ 31.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersArtsCaliberCarbon NanotubesChargeCommunitiesCustomDNADNA SequenceDNA sequencingDevelopmentDevicesDiagnosisDisadvantagedDiscriminationElectronicsElectrostaticsEnzymesExhibitsFiber OpticsGeneticGeometryGoalsHydrophobicityLengthMeasurementMeasuresMetalsMethodsMotionNoiseNucleotidesPatientsPerformancePhosphorusPositioning AttributeReadingReportingResearchResolutionSideSignal TransductionSingle-Stranded DNASodium ChlorideSpeedSymptomsTechniquesTechnologyTestingThickThinnessTransistorsTransition ElementsVariantWidthWorkbasecostdensitydesigndisorder preventionds-DNAelectrical propertyexperimental studygraphenehigh riskhydrophilicitymultiplex detectionnanonanoporenanoscalenext generationnoveloperationsensorvoltage
项目摘要
Project Summary
We propose to demonstrate proof-of-principle single DNA base discrimination by
harnessing the one-atom thickness and electrical properties of newly emerging 2D
materials (as thin as the separation between nucleotides). A direct readout of the DNA
sequence may be possible by measuring the modulation of the current flowing through a
single-layer novel 2D nanoribbon (NR) FET, beyond graphene, induced by each
base in a single-stranded DNA molecule as it passes through a nanopore (NP) in that
NR. This geometry is anticipated to exhibit large electrical current changes for each
nucleotide base due to the unique electrostatic potential associated with each
nucleotide. These potentials modulate the charge density in the narrow 2D FET NR,
altering the corresponding NR current levels. The major benefit of this approach is that
can NR may produce large currents, potentially enabling measurements at high speed.
This approach is newer and high-risk, compared to ionic-current-based sequencing, and
it is tremendously exciting because signal levels ~ µA or higher are predicted, towards
multiplexed high-bandwidth sequencing. This approach particularly addresses the three
key obstacles to nanopore-based sequencing: 1) our approach circumvents the need
to slow down DNA motion through the pore, 2) the predicted differences in electronic
current for each base are large enough that we anticipate the signal-to-noise ratio will
be large enough for base discrimination, even at this native speed, and 3) the
sequence readout method is compatible with multiplexed detection. Important
feasibility tests have already been realized in our group, but this project is still
exploratory and suitable for the R21. Previous efforts in the community, involved
pioneering carbon nanotube-NP FETs (e.g.,Golovchenko’s lab) and more recently,
graphene-NP FETs by Drndic, Radenovic, and Dekker labs. Despite these results, due
to the performance of measured graphene NR-NP FETs even when sub-10-nm-width,
probably due to lack of significant bandgap, and the hydrophobicity of graphene, here
we focus on a more promising, newer class of single-atom thin materials as candidate
2D channels. These NRs have tunable bandgaps and are more hydrophilic and include:
2D metal dichalcogenides (MoS2, WS2) and phosphorene.
We previously tested 20 – 200 nm wide single-
layer graphene NRs with NPs carrying up to 10
µA in 1 mM to 1M KCl solution at bandwidths as
high as 100 MHz. We also developed a way to
drill NPs without lowering the 2D NR
conductance and observed correlated NR and
ionic signals during dsDNA translocation. We
anticipate that single-base resolution may be
achievable at currently reported DNA
translocation speeds (106 bases/s). This
eliminates the need for custom high-speed
ultralow noise electronics, as many off-the-shelf
photodiode amplifiers for fiber-optics are
designed for these current and bandwidth
ranges.
Illustration: The ACS Nano Cover Art from 2016
illustrating phosphorene (a 2D sheet of phosphorous
atoms) nanoribbons (and nanopores) developed in
Drndic lab, to be tested in this work, in addition to 2D
metal dichalcogenides NR FETs.
项目总结
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering adjustable two-pore devices for parallel ion transport and DNA translocations
工程可调双孔装置用于平行离子传输和 DNA 易位
- DOI:10.1063/5.0044227
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chou, Yung-Chien;Chen, Joshua;Lin, Chih-Yuan;Drndić, Marija
- 通讯作者:Drndić, Marija
Mixed-Dimensional 1D/2D van der Waals Heterojunction Diodes and Transistors in the Atomic Limit.
- DOI:10.1021/acsnano.1c10524
- 发表时间:2022-01-25
- 期刊:
- 影响因子:17.1
- 作者:Jadwiszczak, Jakub;Sherman, Jeffrey;Lynall, David;Liu, Yang;Penkov, Boyan;Young, Erik;Keneipp, Rachael;Drndic, Marija;Hone, James C.;Shepard, Kenneth L.
- 通讯作者:Shepard, Kenneth L.
Large area few-layer TMD film growths and their applications
- DOI:10.1088/2515-7639/ab82b3
- 发表时间:2020-04-01
- 期刊:
- 影响因子:4.8
- 作者:Mandyam, Srinivas V.;Kim, Hyong M.;Drndic, Marija
- 通讯作者:Drndic, Marija
Computer vision AC-STEM automated image analysis for 2D nanopore applications
适用于 2D 纳米孔应用的计算机视觉 AC-STEM 自动图像分析
- DOI:10.1016/j.ultramic.2021.113249
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Chen, Joshua;Balan, Adrian;Masih Das, Paul;Thiruraman, Jothi Priyanka;Drndić, Marija
- 通讯作者:Drndić, Marija
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marija Drndic其他文献
Marija Drndic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marija Drndic', 18)}}的其他基金
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10437327 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10676761 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
- 批准号:
10683967 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
- 批准号:
10439291 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
High-bandwidth DNA sequencing using graphene nanoribbon-nanopore devices
使用石墨烯纳米带-纳米孔装置进行高带宽 DNA 测序
- 批准号:
8755887 - 财政年份:2014
- 资助金额:
$ 31.16万 - 项目类别:
High-bandwidth DNA sequencing using graphene nanoribbon-nanopore devices
使用石墨烯纳米带-纳米孔装置进行高带宽 DNA 测序
- 批准号:
8901269 - 财政年份:2014
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8319313 - 财政年份:2011
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8183217 - 财政年份:2011
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8531313 - 财政年份:2011
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using nanopore-nanoelectrode devices for sensing and manipulation
使用纳米孔-纳米电极装置进行 DNA 测序以进行传感和操作
- 批准号:
7928701 - 财政年份:2009
- 资助金额:
$ 31.16万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 31.16万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 31.16万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 31.16万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 31.16万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Collaborative R&D














{{item.name}}会员




