DNA Sequencing with novel 2D FET-nanopore devices
使用新型 2D FET 纳米孔器件进行 DNA 测序
基本信息
- 批准号:9920755
- 负责人:
- 金额:$ 31.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersArtsCaliberCarbon NanotubesChargeCommunitiesCustomDNADNA SequenceDNA sequencingDevelopmentDevicesDiagnosisDisadvantagedDiscriminationElectronicsElectrostaticsEnzymesExhibitsFiber OpticsGeneticGeometryGoalsHydrophobicityLengthMeasurementMeasuresMetalsMethodsMotionNoiseNucleotidesPatientsPerformancePhosphorusPositioning AttributeReadingReportingResearchResolutionSideSignal TransductionSingle-Stranded DNASodium ChlorideSpeedSymptomsTechniquesTechnologyTestingThickThinnessTransistorsTransition ElementsVariantWidthWorkbasecostdensitydesigndisorder preventionds-DNAelectrical propertyexperimental studygraphenehigh riskhydrophilicitymultiplex detectionnanonanoporenanoscalenext generationnoveloperationsensorvoltage
项目摘要
Project Summary
We propose to demonstrate proof-of-principle single DNA base discrimination by
harnessing the one-atom thickness and electrical properties of newly emerging 2D
materials (as thin as the separation between nucleotides). A direct readout of the DNA
sequence may be possible by measuring the modulation of the current flowing through a
single-layer novel 2D nanoribbon (NR) FET, beyond graphene, induced by each
base in a single-stranded DNA molecule as it passes through a nanopore (NP) in that
NR. This geometry is anticipated to exhibit large electrical current changes for each
nucleotide base due to the unique electrostatic potential associated with each
nucleotide. These potentials modulate the charge density in the narrow 2D FET NR,
altering the corresponding NR current levels. The major benefit of this approach is that
can NR may produce large currents, potentially enabling measurements at high speed.
This approach is newer and high-risk, compared to ionic-current-based sequencing, and
it is tremendously exciting because signal levels ~ µA or higher are predicted, towards
multiplexed high-bandwidth sequencing. This approach particularly addresses the three
key obstacles to nanopore-based sequencing: 1) our approach circumvents the need
to slow down DNA motion through the pore, 2) the predicted differences in electronic
current for each base are large enough that we anticipate the signal-to-noise ratio will
be large enough for base discrimination, even at this native speed, and 3) the
sequence readout method is compatible with multiplexed detection. Important
feasibility tests have already been realized in our group, but this project is still
exploratory and suitable for the R21. Previous efforts in the community, involved
pioneering carbon nanotube-NP FETs (e.g.,Golovchenko’s lab) and more recently,
graphene-NP FETs by Drndic, Radenovic, and Dekker labs. Despite these results, due
to the performance of measured graphene NR-NP FETs even when sub-10-nm-width,
probably due to lack of significant bandgap, and the hydrophobicity of graphene, here
we focus on a more promising, newer class of single-atom thin materials as candidate
2D channels. These NRs have tunable bandgaps and are more hydrophilic and include:
2D metal dichalcogenides (MoS2, WS2) and phosphorene.
We previously tested 20 – 200 nm wide single-
layer graphene NRs with NPs carrying up to 10
µA in 1 mM to 1M KCl solution at bandwidths as
high as 100 MHz. We also developed a way to
drill NPs without lowering the 2D NR
conductance and observed correlated NR and
ionic signals during dsDNA translocation. We
anticipate that single-base resolution may be
achievable at currently reported DNA
translocation speeds (106 bases/s). This
eliminates the need for custom high-speed
ultralow noise electronics, as many off-the-shelf
photodiode amplifiers for fiber-optics are
designed for these current and bandwidth
ranges.
Illustration: The ACS Nano Cover Art from 2016
illustrating phosphorene (a 2D sheet of phosphorous
atoms) nanoribbons (and nanopores) developed in
Drndic lab, to be tested in this work, in addition to 2D
metal dichalcogenides NR FETs.
项目摘要
我们建议通过
利用新出现的2D的一个原子厚度和电气特性
材料(与核苷酸之间的分离一样薄)。 DNA的直接读数
通过测量流过A的电流的调制,可能是可能的
单层小说2D纳米替比(NR)FET,超出石墨烯,每种诱导
基于单链的DNA分子,因为它通过纳米孔(NP)
nr。预计这种几何形状会杀死每种几何电流变化
核苷酸基底部由于与每种相关的独特静电电势
核苷酸。这些电势调节狭窄2D FET NR中的电荷密度,
改变相应的NR电流水平。这种方法的主要好处是
NR可以产生大型电流,有可能在高速下启用测量。
与基于离子电流的测序相比,这种方法是新的和高风险的,并且
这是非常令人兴奋的,因为预测信号水平〜μa或更高
多路复用的高带宽测序。这种方法特别解决了这三个
基于纳米孔的测序的关键障碍:1)我们的方法规避了需求
要减慢DNA通过孔的运动,2)电子的预测差异
每个基数的电流足够大,我们预计信噪比将会
即使以这种本地速度,也足够大以进行基础歧视,3)
序列读取方法与多路复用检测兼容。重要的
我们的小组已经实现了可行性测试,但是这个项目仍在
探索性,适合R21。社区的以前努力,参与
开创性的碳纳米管NP Fets(例如Golovchenko的实验室),最近
Drndic,Radenovic和Dekker Labs的石墨烯-NP FET。尽管有这些结果,到期
即使在低于10 nm的宽度时,测得的石墨烯NR-NP FET的性能,
可能是由于缺乏明显的带隙和石墨烯的疏水性
我们专注于更新的,更新的单原子薄材料作为候选人
2D通道。这些NR具有可调的带镜头,并且更亲密,包括:
2D金属二甲植物(MOS2,WS2)和磷烯。
我们以前测试了20 - 200 nm宽的单个
层石墨烯NR,NP最多可携带10
在带宽处的1 mm至1M KCl溶液中µA
高达100 MHz。我们还开发了一种方法
钻NP而不降低2D NR
电导和观察到的相关NR和
DsDNA易位期间的离子信号。我们
预计单基准分辨率可能是
当前报道的DNA可以实现
易位速度(106个基础/s)。这
消除了自定义高速的需求
超级噪声电子,许多现成的
光纤启动的光电二极管放大器是
专为这些当前和带宽而设计
范围。
插图:2016年的ACS Nano封面艺术
说明磷烯(2D磷
原子)在
除2D外,还需要在这项工作中测试Drndic Lab
金属二分法NR FET。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering adjustable two-pore devices for parallel ion transport and DNA translocations
工程可调双孔装置用于平行离子传输和 DNA 易位
- DOI:10.1063/5.0044227
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chou, Yung-Chien;Chen, Joshua;Lin, Chih-Yuan;Drndić, Marija
- 通讯作者:Drndić, Marija
Mixed-Dimensional 1D/2D van der Waals Heterojunction Diodes and Transistors in the Atomic Limit.
- DOI:10.1021/acsnano.1c10524
- 发表时间:2022-01-25
- 期刊:
- 影响因子:17.1
- 作者:Jadwiszczak, Jakub;Sherman, Jeffrey;Lynall, David;Liu, Yang;Penkov, Boyan;Young, Erik;Keneipp, Rachael;Drndic, Marija;Hone, James C.;Shepard, Kenneth L.
- 通讯作者:Shepard, Kenneth L.
Computer vision AC-STEM automated image analysis for 2D nanopore applications
适用于 2D 纳米孔应用的计算机视觉 AC-STEM 自动图像分析
- DOI:10.1016/j.ultramic.2021.113249
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Chen, Joshua;Balan, Adrian;Masih Das, Paul;Thiruraman, Jothi Priyanka;Drndić, Marija
- 通讯作者:Drndić, Marija
Large area few-layer TMD film growths and their applications
- DOI:10.1088/2515-7639/ab82b3
- 发表时间:2020-04-01
- 期刊:
- 影响因子:4.8
- 作者:Mandyam, Srinivas V.;Kim, Hyong M.;Drndic, Marija
- 通讯作者:Drndic, Marija
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marija Drndic其他文献
Marija Drndic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marija Drndic', 18)}}的其他基金
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10437327 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
- 批准号:
10683967 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10676761 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
- 批准号:
10439291 - 财政年份:2022
- 资助金额:
$ 31.16万 - 项目类别:
High-bandwidth DNA sequencing using graphene nanoribbon-nanopore devices
使用石墨烯纳米带-纳米孔装置进行高带宽 DNA 测序
- 批准号:
8755887 - 财政年份:2014
- 资助金额:
$ 31.16万 - 项目类别:
High-bandwidth DNA sequencing using graphene nanoribbon-nanopore devices
使用石墨烯纳米带-纳米孔装置进行高带宽 DNA 测序
- 批准号:
8901269 - 财政年份:2014
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8319313 - 财政年份:2011
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8183217 - 财政年份:2011
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8531313 - 财政年份:2011
- 资助金额:
$ 31.16万 - 项目类别:
DNA sequencing using nanopore-nanoelectrode devices for sensing and manipulation
使用纳米孔-纳米电极装置进行 DNA 测序以进行传感和操作
- 批准号:
7928701 - 财政年份:2009
- 资助金额:
$ 31.16万 - 项目类别:
相似国自然基金
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向超精密电机系统的双降压对称半桥功率放大器噪声机理及抑制策略研究
- 批准号:52307042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Low Cost Photon Counting Detector for Synchrotron Applications
适用于同步加速器应用的低成本光子计数探测器
- 批准号:
7801181 - 财政年份:2010
- 资助金额:
$ 31.16万 - 项目类别:
Integrated EEG/NIR Sensor System for Infants
适用于婴儿的集成 EEG/NIR 传感器系统
- 批准号:
7747667 - 财政年份:2009
- 资助金额:
$ 31.16万 - 项目类别:
Peripheral Auditory System Function in Humans: Continuum of Maturation and Aging
人类外周听觉系统功能:成熟和衰老的连续过程
- 批准号:
7850255 - 财政年份:2009
- 资助金额:
$ 31.16万 - 项目类别:
Core--Animal Model, Analytical Chemistry and Biochemistry
核心--动物模型、分析化学和生物化学
- 批准号:
7457708 - 财政年份:2007
- 资助金额:
$ 31.16万 - 项目类别: