Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
基本信息
- 批准号:10439291
- 负责人:
- 金额:$ 79.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAmplifiersBiologicalBoronBuffersCaliberComplexCustomDNADNA sequencingDetectionDevelopmentDiagnosisDiffuseElectric CapacitanceElectrodesElectronicsElectrostaticsEntropyEnzymesFaceFeedbackFreedomGenerationsGoalsImageLengthMeasurementMeasuresMechanicsMembraneMethodsMotionNoiseOpticsPerformancePhotonsPolymeraseProteinsPublic HealthResearchResolutionRunningShipsSignal TransductionSpeedStochastic ProcessesStructureSystemTechniquesTechnologyTemperatureThinnessTimeTransition ElementsWorkbasecostdesigndetection platformdisorder preventionelectric fieldexperiencefluorophoregraphenemultiplex detectionnanoporeoperationreal-time imagessequencing platformsingle moleculesolid statetemporal measurementtwo-dimensionalvoltagevoltage clampwhole genome
项目摘要
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
There is strong demand for third-generation DNA sequencing systems to be single-molecule, massively-
parallel, and real-time, while also reducing operating costs and supporting long read lengths. No technologies
have yet met this challenge, but the most successful attempts to date have been based on methods which
track the real-time operation of single enzyme molecules operating on a strand of DNA. Optical approaches to
single-polymerase imaging suffer from low signal-to-noise ratios deriving from the weak photon emission from
single fluorophores (< 2500 photons/sec), and thus demand both complex optics and purposely-reduced base
incorporation rates (~1 Hz). Nanopore-based detection approaches offer faster detection and have been
demonstrated to track polymerase activity at higher incorporation rates (~10-100 Hz), but have struggled with
reliability issues and high error rates associated with the still-weak signal levels produced by popular protein
nanopores.
These struggles suggest that nanopore-based single-molecule sequencing techniques which do not de-
pend on real-time imaging of active enzymes would have several important advantages. First and foremost,
they could offer sequencing speeds even faster than a free-running polymerase molecule. Second, removing
active enzymes from the detection platform offers more freedom to optimize key parameters such as buffer
conditions and temperatures outside the operating range of natural enzymes. Third, sequencing platforms
without active enzymes may prove simpler and cheaper to operate, ship, and store. Lastly, nanopores, particu-
larly biological ones, face reliability challenges as electronic devices, experiencing degradation during use.
In this four-year effort, we focus on the development of a multiplexed solid-state nanopore platform ena-
bling a per-pore sequencing rate of at least 105 bases/sec, leveraging integrated electronics and state-of-the-
art solid-state nanopores based on ultra-thin membranes of layered two-dimensional materials and delivering
useful signal bandwidths in excess of 10 MHz when required. We expect to be able to detect signal levels as
low as 50 pA at signal-to-noise ratios greater than 8 and bandwidth better than 2 MHz, making possible high-
speed free-running single-molecule electrophoretic sequencing if the translocation rate and diffusive motion of
the translocating DNA can be controlled. This is accomplished through electrostatic control through gate elec-
trodes in the pore itself and closed-loop feedback. This goal is pursued through three Specific Aims: the de-
sign of solid-state nanopores based on layered two-dimensional materials include hexagonal boron nitride (h-
BN) and graphene or transition metal dichalcogenides and application of these pores to translocating DNA
(Specific Aim 1); the design of electronics optimized for high-speed multiplexed detection of these nanopores
and closed-loop electronic control of the gates within the pore (Specific Aim 2); and application of this system
to controlling translocation rates for sequencing (Specific Aim 3).
固体纳米孔中的无酶、可控静电棘轮
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marija Drndic其他文献
Marija Drndic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marija Drndic', 18)}}的其他基金
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10437327 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
- 批准号:
10683967 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10676761 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
DNA Sequencing with novel 2D FET-nanopore devices
使用新型 2D FET 纳米孔器件进行 DNA 测序
- 批准号:
9920755 - 财政年份:2019
- 资助金额:
$ 79.5万 - 项目类别:
High-bandwidth DNA sequencing using graphene nanoribbon-nanopore devices
使用石墨烯纳米带-纳米孔装置进行高带宽 DNA 测序
- 批准号:
8755887 - 财政年份:2014
- 资助金额:
$ 79.5万 - 项目类别:
High-bandwidth DNA sequencing using graphene nanoribbon-nanopore devices
使用石墨烯纳米带-纳米孔装置进行高带宽 DNA 测序
- 批准号:
8901269 - 财政年份:2014
- 资助金额:
$ 79.5万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8319313 - 财政年份:2011
- 资助金额:
$ 79.5万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8183217 - 财政年份:2011
- 资助金额:
$ 79.5万 - 项目类别:
DNA sequencing using single-layer graphene nanoribbons with nanopores
使用具有纳米孔的单层石墨烯纳米带进行 DNA 测序
- 批准号:
8531313 - 财政年份:2011
- 资助金额:
$ 79.5万 - 项目类别:
DNA sequencing using nanopore-nanoelectrode devices for sensing and manipulation
使用纳米孔-纳米电极装置进行 DNA 测序以进行传感和操作
- 批准号:
7928701 - 财政年份:2009
- 资助金额:
$ 79.5万 - 项目类别:
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 79.5万 - 项目类别:
Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 79.5万 - 项目类别:
Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
- 批准号:
EP/Y003152/1 - 财政年份:2024
- 资助金额:
$ 79.5万 - 项目类别:
Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
- 批准号:
2329940 - 财政年份:2023
- 资助金额:
$ 79.5万 - 项目类别:
Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
- 批准号:
10075892 - 财政年份:2023
- 资助金额:
$ 79.5万 - 项目类别:
Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
- 批准号:
538379-2018 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10681326 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
- 批准号:
10621402 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
- 批准号:
573452-2022 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
- 批准号:
10032436 - 财政年份:2022
- 资助金额:
$ 79.5万 - 项目类别:
Collaborative R&D