Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
基本信息
- 批准号:9923630
- 负责人:
- 金额:$ 71.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAutomobile DrivingBehaviorBiological ModelsBreast Cancer cell lineBreast Epithelial CellsCRISPR libraryCancer Cell GrowthCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexComputer ModelsDNA Sequence AlterationDataDevelopmentDiseaseDrug resistanceFeedbackFlow CytometryGene DosageGene ExpressionGene MutationGene ProteinsGenerationsGenesGeneticLeadLibrariesLinkMachine LearningMalignant NeoplasmsMapsMeasurementMeasuresMethodologyMethodsModelingModernizationMolecularMutateMutationNormal CellPathway interactionsPatternPharmaceutical PreparationsPhenotypePhosphorylationPlayPredictive Cancer ModelProteinsProteomicsProto-Oncogene Proteins c-aktReagentRegulationResearchResistanceRoleSignal PathwaySignal TransductionSystems BiologyTechniquesTechnologyTestingTherapeutic InterventionTranslatingWorkbasecancer cellcancer typecell behaviordesignexperimental studymathematical modelmelanomanovel strategiespersonalized medicinephosphoproteomicspredictive modelingproteomic signatureresponsescreeningtargeted treatmenttool
项目摘要
Title: Reverse Sensitivity Analysis for Identifying Proteomics Signatures of Cancer
Abstract
Cancer is a complex disease in which genetic disruptions in cell signaling networks are known to play a
significant role. A major aim of cancer systems biology is to build models that can predict the impact of these
genetic disruptions to guide therapeutic interventions (i.e. personalized medicine). A prominent driver of
cancer cell growth is signaling pathway deregulation from mutations in key regulatory nodes and loss/gain in
gene copy number (CNV). However, current mathematical modeling approaches do not adequately capture the
impact of these genetic changes. Reasons for this include the poorly understood layers of regulation between
gene expression and protein activity, and limitations in most modeling and protein measurement technologies.
In addition, there is a paucity of overarching hypotheses that can link specific gene expression or mutation
patterns to the cancer phenotype. Recent work by our group has resolved some of the technical challenges that
have hindered the application of proteomics technologies to cancer systems biology research. It has also
suggested a new approach for using quantitative proteomics data to understand mechanisms driving cancer
cell behavior. Using an ultrasensitive, targeted proteomics platform that can measure both abundance and
phosphorylation of proteins present at only hundreds of copies per cell, we found that signaling pathways
appeared to be controlled by only a limited number of key nodes whose activity is tightly regulated through low
abundance and feedback phosphorylation. We propose to build on these findings by critically testing the
hypothesis that CNV and genetic mutations dysregulate signaling pathways in cancer by shifting control
from tightly regulated nodes to poorly regulated ones. This will be done by systematically identifying key
regulatory nodes of normal and cancer cells using CRISPRa/i screens, determine the relationship between
protein abundance and signaling pathway activities using ultrasensitive targeted proteomics and
phosphoproteomics and then use these data to semi-automatically generate mathematical models of the
functional topology of the signaling pathways. Specifically, we propose to: 1) Use targeted CRISPR gene
perturbation libraries to identify the regulatory topologies of signaling pathways important in cancer and how
they are disrupted by common cancer mutations, 2) Use the CRISPR perturbation and proteomics data to
semi-automatically build predictive models of cancer cell signaling pathways, and 3) Combine modeling and
perturbation screens to understand how feedback regulation in cancer contributes to drug resistance. This
work will result in simplified, computationally tractable yet mechanistic models of signaling pathways and
provide network maps of feedback and crosstalk circuits that can be used to rapidly map the regulatory state of
cells. Most important, it will provide a generic platform for translating protein abundance and phosphorylation
patterns into a “state” snapshot of cancers that can lead to predicting their response to specific drugs.
标题:识别癌症蛋白质组学特征的反向敏感性分析
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Jun Qian其他文献
Wei-Jun Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei-Jun Qian', 18)}}的其他基金
Robust Mass Spectrometric Protein/Peptide Assays for Type 1 Diabetes Clinical Applications
适用于 1 型糖尿病临床应用的稳健质谱蛋白质/肽检测
- 批准号:
10730900 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
- 批准号:
10395957 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
9918021 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10238054 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10448306 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
- 批准号:
10615630 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10020391 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




