Computational and brain predictors of emotion cue integration
情绪线索整合的计算和大脑预测因子
基本信息
- 批准号:9923725
- 负责人:
- 金额:$ 45.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-19 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAgreementBase of the BrainBasic ScienceBayesian ModelingBipolar DisorderBrainBrain regionClassificationCognitiveComplexComputer ModelsCuesDataDependenceEmotionalEmotional disorderEmotionsEventExhibitsFaceFace ProcessingFacial ExpressionFunctional Magnetic Resonance ImagingFutureImageIndividualLanguageLateralLearningLifeLinguisticsMachine LearningMajor Depressive DisorderMeasuresMental disordersMethodsModalityModelingMood DisordersMoodsMovementNational Institute of Mental HealthNeurodevelopmental DisorderNeurosciencesObserver VariationParticipantPatientsPatternPerceptionProcessPsychological reinforcementPsychologistResearchResearch Domain CriteriaResearch PersonnelRunningSamplingScanningScientistSensorySocial FunctioningSocial InteractionSocial ProcessesSocial PsychologySpecific qualifier valueSpeechStructureSystemTestingTimeTrainingTreatment EfficacyVisualWeightWorkaffective computingbasebrain abnormalitiescognitive neurosciencecomputer sciencecomputerized toolsexecutive functioninsightlanguage comprehensionmultimodalityneuroimagingnovelrecruitrelating to nervous systemresponsescaffoldsocialsocial deficitstool
项目摘要
The purpose of this project is to develop computational and brain-based models of emotion cue integration:
people’s inferences about others’ emotions based on dynamic, multimodal cues. Observers often decide how
targets feel based on cues such as facial expressions, prosody, and language. Such inferences scaffold
healthy social interaction, and abnormal inference both marks and exacerbates social deficits in numerous
psychiatric disorders. Psychologists and neuroscientists have studied emotion inference for decades, but the
vast majority of this work employs simplified social cues, such as vignettes or static images of faces. By
contrast, “real world” emotion cues are complex, dynamic, and multimodal. Cue integration—inference based
on naturalistic emotion information—likely differs from simpler inference at cognitive and neural levels, but this
phenomenon remains poorly understood. This means that scientists lack a clear model of how observers
adaptively process complex emotion cues, and how that processing goes awry in mental illness. Especially
lacking are mechanistic models that can describe the computations and brain processes involved in cue
integration with sufficient precision to predict inference in new cases, observers, and samples. This project will
merge tools from social psychology, computer science, and neuroscience to generate a novel and
rigorous model of emotion cue integration. We have demonstrated that in the face of complex emotion
cues, observers dynamically “weight” cues from each modality (e.g., visual, linguistic) over time, a process that
(i) tracks shifts in brain activity and connectivity; and (ii) can be captured using Bayesian models. Here, we will
expand this work in several ways. First, we will develop precise computational tools to isolate features of
emotion cues—such as facial movements, prosody, and linguistic sentiment—that track observers’ use of each
cue modality during integration. Second, we will develop multi-region “signatures” of brain activity and
connectivity that track emotion inference in each modality. We will use these signatures in conjunction with
machine learning to predict unimodal emotion inference and cue integration in new observers and samples,
based on brain data alone. Third, we will explore the context-dependence of naturalistic emotion inference by
testing whether reinforcement learning can bias observers’ cue integration and accompanying brain signatures.
Finally, we will model computational and neural abnormalities associated with cue integration in patients with
Major Depressive Disorder and Bipolar Disorder. At the level of basic science, these data will generate a
fundamentally new—and more naturalistic—approach to the neuroscience of emotion inference. The
computational and brain metrics we produce will also be made publically available to facilitate the open and
cumulative study of emotion inference across labs. At a translational level, we will provide a mechanistic, rich
account of abnormal emotion inference in mood disorders, paving the way for computational and brain markers
that can be used to assess social dysfunction and treatment efficacy in these and other mental illnesses.
这个项目的目的是开发情感线索整合的计算和基于大脑的模型:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamil Zaki其他文献
Jamil Zaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jamil Zaki', 18)}}的其他基金
Social factors in the mental health of young adults: Bridging psychological and network analysis
年轻人心理健康的社会因素:桥接心理和网络分析
- 批准号:
10186567 - 财政年份:2021
- 资助金额:
$ 45.18万 - 项目类别:
Social factors in the mental health of young adults: Bridging psychological and network analysis
年轻人心理健康的社会因素:桥接心理和网络分析
- 批准号:
10398898 - 财政年份:2021
- 资助金额:
$ 45.18万 - 项目类别:
Social factors in the mental health of young adults: Bridging psychological and network analysis
年轻人心理健康的社会因素:桥接心理和网络分析
- 批准号:
10593072 - 财政年份:2021
- 资助金额:
$ 45.18万 - 项目类别:
Relationships as psychological protective factors: Neural and behavioral markers
作为心理保护因素的关系:神经和行为标记
- 批准号:
8751325 - 财政年份:2014
- 资助金额:
$ 45.18万 - 项目类别:
Relationships as psychological protective factors: Neural and behavioral markers
作为心理保护因素的关系:神经和行为标记
- 批准号:
8912545 - 财政年份:2014
- 资助金额:
$ 45.18万 - 项目类别:
相似海外基金
A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
- 批准号:
22KJ0334 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
- 批准号:
2410236 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
- 批准号:
900240 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
- 批准号:
23H00770 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
- 批准号:
10829529 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
- 批准号:
2346114 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
- 批准号:
10828588 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
- 批准号:
MR/X029301/1 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
- 批准号:
2234506 - 财政年份:2023
- 资助金额:
$ 45.18万 - 项目类别:
Standard Grant














{{item.name}}会员




