Neural Electrodes with Enhanced Charge Injection and Reduced Interfacial Impedance Using Graphenated Carbon Nanotubes Coated With Atomic Layer-Deposited Platinum Nanoparticles

使用原子层沉积铂纳米粒子涂覆的石墨化碳纳米管增强电荷注入并降低界面阻抗的神经电极

基本信息

  • 批准号:
    9924896
  • 负责人:
  • 金额:
    $ 46.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to evaluate graphenated carbon nanotubes (gCNTs) as lower impedance, smaller electrodes for neurostimulation, using deep brain stimulation (DBS) as a test case, with the long-term goal of developing a new type of neural electrode with lower impedance and smaller size. Lower impedance of the electrode-tissue interface results in lower power consumption, as a smaller voltage is required to achieve the same charge injection. Lower power consumption extends battery life and decreases the size of the batteries and thus of the implanted device. The minimum size of stimulating electrodes is limited by the minimum charge injection required for effective stimulation. As well, the size of the electrode is an important factor in the insertion damage created by electrode insertion and the specificity of the volume that can be stimulated. Lower impendence, smaller electrodes will lead to less damaging electrodes and a combination of smaller and longer lasting batteries. We will compare the performance of gCNT electrodes to standard platinum electrodes using quantitative in vitro and in vivo measurements. We expect to increase the reversible charge injection capacity by 20x and reduce the impedance by 65% versus the same-sized Pt electrode. The specific aims of this project are: (1) Quantify the effect of gCNT morphology on charge injection, interfacial impedance, and adhesion and identify processing conditions that improve these properties. (2) Deposit platinum nanoparticles via atomic layer deposition (ALD) on gCNTs to further increase the charge injection capacity and decrease impedance. These Pt-gCNTs will be deposited in a checkerboard pattern (balance Pt electrodes) on a multielectrode array (MEA), allowing performance to be compared within animal (3). Test the MEAs in vivo in hemiparkinsonian 6-OHDa lesioned rats, implanting electrodes into the subthalamic nucleus and delivering chronic daily symptom-relieving DBS in order to assess Pt-gCNT vs Pt electrode performance. In the applicant’s opinion, proposed research is innovative because it introduces a new material (gCNTs) and a new process (ALD) that will improve the performance of neural electrodes. gCNTs are expected to have significantly better performance than standard Pt electrodes. ALD has the capability to deposit nanoparticles in a unique way that maximizes the amount of gCNTs surface area that is coated as well as the electrochemical surface area of the platinum. Nanostructured platinum will be used to further enhance gCNTs’ neural electrode performance. The outcome of this project will be a comprehensive assessment of Pt-gCNTs as highly efficient neural stimulation electrodes. If realized, it will lead to neural stimulation electrodes that are smaller, limiting insertion damage, and consume less power, thereby reducing the size and increasing the lifetime of batteries and may expand the frontier of possible electrode systems.
本项目的目的是评估石墨烯化碳纳米管(gCNT)作为低阻抗, 用于神经刺激的较小电极,使用脑深部电刺激(DBS)作为测试用例, 目的是研制一种阻抗更低、体积更小的新型神经电极。低阻抗 电极-组织界面导致较低的功耗,因为需要较小的电压来实现 相同的电荷注入。较低的功耗延长了电池寿命, 电池以及植入设备的电池。刺激电极的最小尺寸受到 有效激励所需的最小电荷注入。同样,电极的尺寸是重要的 电极插入造成的插入损伤的因素以及可以 受刺激更低的阻抗、更小的电极将导致更少的损坏电极,并且 更小更持久的电池我们将比较gCNT电极与标准电极的性能。 铂电极使用定量的体外和体内测量。我们希望增加可逆的 与相同尺寸的Pt电极相比,电荷注入容量增加20倍,阻抗降低65%。的 本项目的具体目标是:(1)量化gCNT形态对电荷注入,界面 阻抗和粘附性,并确定改善这些性能的加工条件。(2)存款 铂纳米颗粒通过原子层沉积(ALD)在gCNT上,以进一步增加电荷注入 容量和降低阻抗。这些Pt-gCNT将以棋盘图案沉积(平衡Pt 电极),允许在动物(3)内比较性能。测试 6-OHDa毁损大鼠偏侧帕金森病的体内MEA,将电极植入丘脑底核 以及输送慢性每日缓解痉挛的DBS,以评估Pt-gCNT相对于Pt电极的性能。 在申请人看来,所提出的研究是创新的,因为它引入了一种新材料(gCNT)和一种新的纳米材料。 新工艺(ALD)将提高神经电极的性能。预计gCNT将具有 性能明显优于标准Pt电极。ALD具有存款纳米颗粒的能力, 一种独特的方式,最大限度地提高了gCNT的表面积,被涂覆以及电化学 铂的表面积。纳米结构铂将用于进一步增强gCNTs的神经电极 性能该项目的成果将是对Pt-gCNTs高效的全面评估 神经刺激电极。如果实现,它将导致神经刺激电极更小,限制 插入损坏,并消耗更少的功率,从而减小尺寸并增加电池的寿命 并且可以扩展可能的电极系统的边界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Bernard Parker其他文献

Charles Bernard Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Bernard Parker', 18)}}的其他基金

Evaluation of Carbon Nanotube Electrodes for Neural Stimulation
碳纳米管电极神经刺激的评价
  • 批准号:
    8294564
  • 财政年份:
    2011
  • 资助金额:
    $ 46.18万
  • 项目类别:
Evaluation of Carbon Nanotube Electrodes for Neural Stimulation
碳纳米管电极神经刺激的评价
  • 批准号:
    8114704
  • 财政年份:
    2011
  • 资助金额:
    $ 46.18万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 46.18万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 46.18万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 46.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了