Neural Electrodes with Enhanced Charge Injection and Reduced Interfacial Impedance Using Graphenated Carbon Nanotubes Coated With Atomic Layer-Deposited Platinum Nanoparticles
使用原子层沉积铂纳米粒子涂覆的石墨化碳纳米管增强电荷注入并降低界面阻抗的神经电极
基本信息
- 批准号:9924896
- 负责人:
- 金额:$ 46.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAlloysAnimalsAreaBrainCarbon NanotubesChargeChronicCochlear ImplantsConsumptionDataDeep Brain StimulationDepositionDevicesElectrodesEquilibriumEssential TremorGoalsImpairmentImplanted ElectrodesIn VitroInjectionsIntercellular FluidIslandLeadLengthLesionLifeMeasurementMeasuresMechanicsMissionMorphologyNamesNanostructuresNervous System PhysiologyOutcomeParkinson DiseasePatternPerformancePeriodicityPhysiologic pulsePlant LeavesPlatinumProcessPropertyPublic HealthRattusResearchResolutionSpecificitySpectrum AnalysisStructure of subthalamic nucleusSurfaceSystemTechnologyTestingTissuesUnited States National Institutes of HealthWorkatomic layer depositionbasebiomaterial compatibilitydensitydisabilityelectric impedancefrontiergrapheneimplantable deviceimprovedin vivoinnovationinterfacialmulti-electrode arraysnanoparticleneural stimulationnext generationplatinum electrodereduce symptomsrelating to nervous systemvagus nerve stimulationvoltage
项目摘要
The objective of this project is to evaluate graphenated carbon nanotubes (gCNTs) as lower impedance,
smaller electrodes for neurostimulation, using deep brain stimulation (DBS) as a test case, with the long-term
goal of developing a new type of neural electrode with lower impedance and smaller size. Lower impedance of
the electrode-tissue interface results in lower power consumption, as a smaller voltage is required to achieve
the same charge injection. Lower power consumption extends battery life and decreases the size of the
batteries and thus of the implanted device. The minimum size of stimulating electrodes is limited by the
minimum charge injection required for effective stimulation. As well, the size of the electrode is an important
factor in the insertion damage created by electrode insertion and the specificity of the volume that can be
stimulated. Lower impendence, smaller electrodes will lead to less damaging electrodes and a combination of
smaller and longer lasting batteries. We will compare the performance of gCNT electrodes to standard
platinum electrodes using quantitative in vitro and in vivo measurements. We expect to increase the reversible
charge injection capacity by 20x and reduce the impedance by 65% versus the same-sized Pt electrode. The
specific aims of this project are: (1) Quantify the effect of gCNT morphology on charge injection, interfacial
impedance, and adhesion and identify processing conditions that improve these properties. (2) Deposit
platinum nanoparticles via atomic layer deposition (ALD) on gCNTs to further increase the charge injection
capacity and decrease impedance. These Pt-gCNTs will be deposited in a checkerboard pattern (balance Pt
electrodes) on a multielectrode array (MEA), allowing performance to be compared within animal (3). Test the
MEAs in vivo in hemiparkinsonian 6-OHDa lesioned rats, implanting electrodes into the subthalamic nucleus
and delivering chronic daily symptom-relieving DBS in order to assess Pt-gCNT vs Pt electrode performance.
In the applicant’s opinion, proposed research is innovative because it introduces a new material (gCNTs) and a
new process (ALD) that will improve the performance of neural electrodes. gCNTs are expected to have
significantly better performance than standard Pt electrodes. ALD has the capability to deposit nanoparticles in
a unique way that maximizes the amount of gCNTs surface area that is coated as well as the electrochemical
surface area of the platinum. Nanostructured platinum will be used to further enhance gCNTs’ neural electrode
performance. The outcome of this project will be a comprehensive assessment of Pt-gCNTs as highly efficient
neural stimulation electrodes. If realized, it will lead to neural stimulation electrodes that are smaller, limiting
insertion damage, and consume less power, thereby reducing the size and increasing the lifetime of batteries
and may expand the frontier of possible electrode systems.
该项目的目的是评估图形的碳纳米管(GCNT)作为较低的阻抗,
使用深脑刺激(DB)作为测试用例,用于神经刺激的较小电子,长期
开发具有较低阻抗和较小尺寸的新型神经元电极的目标。较低的阻抗
电子组织接口会导致较低的功率消耗,因为需要较小的电压才能实现
相同的电荷注入。较低的功耗可以延长电池寿命,并降低
电池,因此是植入的设备。刺激电子的最小尺寸受到
有效刺激所需的最低电荷注入。同样,电子的大小也很重要
电极插入产生的插入损伤的因素以及可以是的体积的特异性
刺激。较低的强制性,较小的电子将导致损坏的电子较小,组合的组合
较小且持久的电池。我们将比较GCNT电子的性能与标准
使用定量体外和体内测量的铂电极。我们希望增加可逆的
与同一大小的PT电极相比,电荷注入能力降低20倍,并将阻抗降低65%。这
该项目的具体目的是:(1)量化GCNT形态对电荷注入,界面的影响
阻抗,粘附并确定改善这些特性的处理条件。 (2)存款
通过GCNT上的原子层沉积(ALD),铂纳米颗粒进一步增加了电荷注入
容量并减少阻抗。这些PT-GCNT将以棋盘格式存放(Balance Pt
电极)在多电极阵列(MEA)上,可以在动物(3)中比较性能。测试
在hemiparkinsonian 6-ohda病变的大鼠中的体内,将电极植入丘脑下核
并提供慢性每日症状的DBS,以评估PT-GCNT与PT电极性能。
申请人认为,拟议的研究具有创新性,因为它引入了新材料(GCNT)和一个
新过程(ALD)将改善神经电极的性能。 GCNT有望拥有
与标准PT电极相比,性能要好得多。 ALD有能力将纳米颗粒沉积在
一种独特的方式,可最大程度地提高涂层的GCNT表面积和电化学的量
铂的表面积。纳米结构的铂将用于进一步增强GCNT的神经电极
表现。该项目的结果将是对PT-GCNT的全面评估
神经刺激电极。如果实现,它将导致较小,限制的神经刺激电极
插入损坏,消耗更少的功率,从而降低了电池的尺寸并增加了寿命
并可能扩大可能的电极系统的前沿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Bernard Parker其他文献
Charles Bernard Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Bernard Parker', 18)}}的其他基金
Evaluation of Carbon Nanotube Electrodes for Neural Stimulation
碳纳米管电极神经刺激的评价
- 批准号:
8294564 - 财政年份:2011
- 资助金额:
$ 46.18万 - 项目类别:
Evaluation of Carbon Nanotube Electrodes for Neural Stimulation
碳纳米管电极神经刺激的评价
- 批准号:
8114704 - 财政年份:2011
- 资助金额:
$ 46.18万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
- 批准号:82372389
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10686166 - 财政年份:2022
- 资助金额:
$ 46.18万 - 项目类别:
Nanostructured surfaces with improved hemocompatibility
具有改善血液相容性的纳米结构表面
- 批准号:
10510050 - 财政年份:2022
- 资助金额:
$ 46.18万 - 项目类别:
Understanding The Impact of Diabetes on Implant Performance: A Retrieval Study
了解糖尿病对植入物性能的影响:一项检索研究
- 批准号:
10396771 - 财政年份:2019
- 资助金额:
$ 46.18万 - 项目类别:
Understanding The Impact of Diabetes on Implant Performance: A Retrieval Study
了解糖尿病对植入物性能的影响:一项检索研究
- 批准号:
9760101 - 财政年份:2019
- 资助金额:
$ 46.18万 - 项目类别:
Understanding The Impact of Diabetes on Implant Performance: A Retrieval Study
了解糖尿病对植入物性能的影响:一项检索研究
- 批准号:
9926078 - 财政年份:2019
- 资助金额:
$ 46.18万 - 项目类别: