Evaluation of Carbon Nanotube Electrodes for Neural Stimulation
碳纳米管电极神经刺激的评价
基本信息
- 批准号:8114704
- 负责人:
- 金额:$ 18.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-05 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:BiocompatibleBrainCarbon NanotubesCellsChargeChemicalsChronicConsumptionDeep Brain StimulationElectrodesElectrolysesEssential TremorEvaluationFilmGoalsGrowthIn VitroInjection of therapeutic agentIntercellular FluidLeadLengthLifeMeasurementMeasuresMetalsModificationMorphologyNickelOutcomeOxidative StressOxygenParkinson DiseasePerformancePharmaceutical PreparationsPhysiologic pulsePlatinumPorosityRattusScanningSolutionsSourceSpecificitySpectrum AnalysisSurfaceSymptomsSystemTestingTissuesWaterbasecatalystdensityelectric impedancefunctional groupimplantable deviceinterfacialiridium oxideneural prosthesisneural stimulationplatinum electroderelating to nervous systemresponsevoltage
项目摘要
DESCRIPTION (provided by applicant): The goal of this project is to evaluate carbon nanotubes (CNTs) as lower impedance, smaller electrodes for neurostimulation, using deep brain stimulation (DBS) as a test case. Lower impedance of the electrode-tissue interface results in lower power consumption, as a smaller voltage is required to achieve the same charge injection. Low power consumption extends battery life and decreases the size of the batteries and thus of the implanted device. The size of stimulating electrodes is limited by the minimum charge injection required for effective stimulation and the impedance of the electrode-tissue interface. As well, the size of the electrode is an important factor in the insertion damage created by the electrode and the specificity of the volume that can be stimulated. Lower impendence and smaller electrodes will lead to less damaging electrodes and a combination of smaller and longer lasting batteries. We will compare the performance of CNT electrodes to AIROF and traditional platinum electrodes using quantitative in vitro measurements. We expect to increase the reversible charge injection capacity, Qinj, (in ¿C/cm2) by 230% over the same-sized Pt electrode and exceed AIROF electrodes by 200% in the water electrolysis window, or to reduce the size of the electrode from a standard 0.06 cm2 to 0.026 cm2 while maintaining the same charge injection capacity, or a combination thereof. We expect to reduce the impedance, Z, by 65% vs a platinum electrode and 40% vs an AIROF electrode of the same size. The specific aims of this project are: (1) Quantify the effect of CNT morphology (length, density, orientation) on charge injection and interfacial impedance, and identify those combinations that increase charge injection and reduce interfacial impedance. The charge injection capacity will be determined by measuring voltage transients during in vitro current pulse stimulation, and the charge injection mechanisms will be determined by cyclic voltammetry. The interfacial impedance will be measured in vitro by electrochemical impedance spectroscopy. (2) Using the best electrode configuration from Aim #1, evaluate chemical modification of the CNT surface, such as oxygen functional groups, e.g., =O and -COOH, to further increase the charge injection capacity and decrease the impedance. (3) Test the top 5 electrode configurations from Aim #2 in vitro with rat neural tissue for a glial response and assess the CNT electrode performance (Qinj, Z, power consumption) in the presence of neural tissue and compare the performance to platinum and AIROF electrodes. Further, the electrodes will undergo chronic pulse testing in solution to evaluate the stability of charge injection capacity and interfacial impedance. The outcome of this project will be a comprehensive in vitro assessment of carbon nanotubes, grown with a platinum catalyst, as highly efficient neural stimulation electrodes. If realized, it will lead to neural stimulation electrodes that are smaller, limiting insertion damage, and consume less power, thereby reducing the size and increasing the lifetime of batteries.
PUBLIC HEALTH RELEVANCE: Carbon nanotube-based electrodes for neural stimulation will allow the creation of neural electrodes to alleviate symptoms of Parkinson's disease, Essential tremor, and potentially other neural stimulation applications. These electrodes will be smaller, causing less damage to the brain, and have lower power consumption, so batteries will last longer and need to be replaced less frequently.
描述(由适用提供):该项目的目的是将碳纳米管(CNT)评估为较低的阻抗,使用深脑刺激(DBS)作为验证案例,将碳纳米管(CNT)评估为较小的神经刺激电极。电极组织接口的较低阻抗会导致较低的功率消耗,因为需要较小的电压才能获得相同的电荷注入。低功耗可以延长电池寿命,并降低电池的大小以及植入设备的尺寸。刺激电子的大小受到有效刺激所需的最小电荷注入和电极组织接口的阻抗。同样,电极的大小也是电极插入损伤的重要因素,以及可以刺激的体积的特异性。较低的燃料和较小的电极将导致较小的破坏性电子以及较小且持久的电池组合。我们将使用定量的体外测量值将CNT电极与AIROF和传统铂电极的性能进行比较。我们预计在相同尺寸的PT电极上将可逆的电荷注入能力QIINJ(在€c/cm2中)增加230%,并在水电窗口中将电极超过200%,或者从标准的0.06 cm2到0.026 cm2的电极大小,同时维持同一电荷注射能力,或者保持相同的电荷注射能力。我们期望将阻抗Z降低65%,而铂电极和40%的阻抗和相同尺寸的Airof电极。该项目的具体目的是:(1)量化CNT形态(长度,密度,方向)对电荷注入和界面阻抗的影响,并确定那些增加电荷注入并减少界面阻抗的组合。电荷注入能力将通过测量体外电流脉冲刺激期间的电压瞬变来确定,并且电荷注入机制将由循环伏安法确定。界面阻抗将通过电化学阻抗光谱在体外测量。 (2)使用AIM#1的最佳电极构型评估CNT表面的化学修饰,例如氧官能团,例如= O = O和-cooH,以进一步增加电荷注入能力并降低阻抗。 (3)在神经元组织的存在下,与大鼠神经元组织的AIM#2的前5个电极构型在体外与大鼠神经元组织一起测试CNT电极性能(QINJ,Z,功耗),并将性能与铂和电极相比。此外,电极将在溶液中进行慢性脉冲测试,以评估电荷注入能力和界面阻抗的稳定性。该项目的结果将是对碳纳米管的全面体外评估,该碳纳米管具有铂催化剂,作为高效的神经元刺激电极。如果实现的话,它将导致较小的神经元刺激电极,限制插入损伤,并消耗更少的功率,从而降低电池的尺寸并增加了寿命。
公共卫生相关性:用于神经刺激的基于碳纳米管的电极将使神经刺激的产生减轻帕金森氏病的症状,必需树和可能其他神经刺激应用。这些电极会较小,对大脑造成较小的损害,并具有较低的功耗,因此电池的使用寿命将持续更长的时间,并且需要更换频率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Bernard Parker其他文献
Charles Bernard Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Bernard Parker', 18)}}的其他基金
Neural Electrodes with Enhanced Charge Injection and Reduced Interfacial Impedance Using Graphenated Carbon Nanotubes Coated With Atomic Layer-Deposited Platinum Nanoparticles
使用原子层沉积铂纳米粒子涂覆的石墨化碳纳米管增强电荷注入并降低界面阻抗的神经电极
- 批准号:
9924896 - 财政年份:2020
- 资助金额:
$ 18.3万 - 项目类别:
Evaluation of Carbon Nanotube Electrodes for Neural Stimulation
碳纳米管电极神经刺激的评价
- 批准号:
8294564 - 财政年份:2011
- 资助金额:
$ 18.3万 - 项目类别:
相似国自然基金
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
10534746 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
10307095 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别:
Subcellular Wireless Axons for in vivo Localized Neuronal Excitation
用于体内局部神经元兴奋的亚细胞无线轴突
- 批准号:
9886359 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别:
Novel probes for expanding immunobased detection into the short wave infrared spe
用于将基于免疫的检测扩展到短波红外光谱的新型探针
- 批准号:
8302855 - 财政年份:2012
- 资助金额:
$ 18.3万 - 项目类别:
Novel probes for expanding immunobased detection into the short wave infrared spe
用于将基于免疫的检测扩展到短波红外光谱的新型探针
- 批准号:
8507666 - 财政年份:2012
- 资助金额:
$ 18.3万 - 项目类别: