Sonogenetic control of neurons in a large volume of the rodent brain
啮齿动物大脑大体积神经元的声遗传学控制
基本信息
- 批准号:9925113
- 负责人:
- 金额:$ 264.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAffectAnimalsAreaBRAIN initiativeBehaviorBehavioralBenchmarkingBiological AssayBiomedical EngineeringBrainCaenorhabditis elegansCell Culture TechniquesCellsChimera organismCodeCodon NucleotidesDataDefectDevelopmentDevicesDiffuseDiseaseElectromagneticsElectromyographyElectrophysiology (science)EpilepsyExhibitsFemaleFrequenciesGenerationsGeneticGrantHeartHomologous GeneHumanHypothalamic structureImageIn VitroInterneuronsInvertebratesKineticsLengthLightMammalian CellMammalsMarine InvertebratesMechanicsMethodsMotor NeuronsMusNeurogliaNeuronsNeurosciencesOperative Surgical ProceduresPeptidesPharmacologyPhysiologic pulsePolypsPopulationPropertyProteinsRodentSkinSliceSourceStimulusStructural ModelsSyndromeSystemTechnologyTestingTherapeuticThinnessTransducersTranslatingUltrasonic TransducerUltrasonic waveUltrasonographyVariantadeno-associated viral vectoragouti proteinbasebehavior testbonebrain volumecell typedesigneffectiveness testingefficacy testingexperimental studyfeedinggenetic analysisgenetic approachin vitro Assayin vivoinnovationlithium niobatemechanotransductionmethod developmentmillisecondmodels and simulationmouse modelnovelnovel therapeuticsoptogeneticsresponsesmall moleculespatiotemporalstructural biologytooltranscriptome
项目摘要
Abstract
A key challenge in neuroscience is the development of methods to non-invasively manipulate specific neuronal
cell types in vivo. While recent opto-, chemo- and magneto-genetic approaches have revolutionized our ability
to control both neuronal and non-neuronal cell types, they each suffer from critical drawbacks, including the
inability to deliver light to targets deep within the brain or to large volumes of the brain (opto-), and the lack of
precise temporal control for both chemo- and magneto-genetic approaches. The Chalasani lab has recently
demonstrated a noninvasive method for controlling the activity of neurons using ultrasound, a system they call
sonogenetics. They have demonstrated that mechanosensitive TRP-N channel homologs from C. elegans,
Hydractinia, and Hydra magnipapillata can be used to non-invasively activate mammalian cells both in vitro and
in vivo. They hypothesize that target cells expressing these TRP-N channels are rendered sensitive to
mechanical deformations generated by non-invasive ultrasound waves. This proposal aims to extend the
sonogenetic approach to control specific neuronal populations throughout large volumes of the mouse brain, a
system that would be useful for reversing electrophysiological and behavioral deficits seen in epilepsy, for
example. They will identify channels with non-overlapping ultrasound stimulus ranges by testing variants and
chimeras of the Hydra TRP-N channels in high-throughput imaging and slice culture electrophysiology assays
in vitro, as well as in feeding and electromyography assays in vivo (Aim 1). They also plan to develop a new
lithium niobate-based transducer that will deliver ultrasound throughout the mouse brain. Specifically, they will
use Schroeder’s optimal diffuser design in a device that will generate spatiotemporally incoherent ultrasound
that upon reflection, avoids interference and localized spikes in ultrasound (Aim 2). Finally, they plan to activate
GABAergic inhibitory interneurons broadly throughout the brain to alleviate behavioral and electrophysiological
deficits in mouse models of epilepsy and Rhett’s syndrome. Optogenetic, chemogenetic, and pharmacological
methods have been previously used to control these cell populations, providing benchmarks for comparison.
These studies will develop a noninvasive method for manipulating the activity of specific cells within large
volumes of the rodent brain or body. Further, these methods can be translated into the human system to target
specific cell populations for therapeutic purposes.
摘要
神经科学中的一个关键挑战是开发非侵入性操作特定神经元的方法
活体内的细胞类型。虽然最近的光、化学和磁遗传方法已经彻底改变了我们的能力
为了同时控制神经细胞和非神经细胞类型,它们各自都存在严重的缺陷,包括
无法将光线投射到大脑深处的目标或大脑的大量区域(光敏),以及缺乏
对化学和磁成因方法进行精确的时间控制。Chalasani实验室最近
演示了一种使用超声波控制神经元活动的非侵入性方法,他们称之为
声学遗传学。他们已经证明了线虫的机械敏感性Trp-N通道同源物,
Hydractinia和Hydra Magipapillata可用于体外和体外无创激活哺乳动物细胞
在活体内。他们假设表达这些Trp-N通道的靶细胞对
非侵入性超声波产生的机械变形。这项建议旨在延长
通过声发生技术控制大量小鼠脑内特定神经元群体的研究
该系统将有助于扭转癫痫患者的电生理和行为缺陷,
举个例子。他们将通过测试变种和
Hydra Trp-N通道的嵌合体在高通量成像和切片培养电生理分析中的应用
在体外,以及在喂养和体内肌电分析(目标1)。他们还计划开发一种新的
基于铌酸锂的换能器,将把超声波传输到小鼠的整个大脑。具体来说,他们将
在将产生时空非相干超声的设备中使用施罗德的最佳漫射器设计
在反射时,避免了超声波中的干扰和局部尖峰(目标2)。最后,他们计划启动
GABA能抑制中间神经元广泛分布于大脑以减轻行为和电生理
癫痫和瑞德综合征小鼠模型的缺陷。光遗传学、化学遗传学和药理学
以前曾使用各种方法来控制这些细胞群,为比较提供了基准。
这些研究将开发一种非侵入性的方法来操纵大鼠体内特定细胞的活动
啮齿动物大脑或身体的体积。此外,这些方法可以被翻译到人类系统中来定向
用于治疗目的的特定细胞群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sreekanth H. Chalasani其他文献
Identification and characterization of a skin microbiome on emCaenorhabditis elegans/em suggests environmental microbes confer cuticle protection
秀丽隐杆线虫皮肤微生物组的鉴定和表征表明环境微生物赋予角质层保护
- DOI:
10.1128/spectrum.00169-24 - 发表时间:
2024-06-25 - 期刊:
- 影响因子:3.800
- 作者:
Nadia B. Haghani;Robert H. Lampe;Buck S. Samuel;Sreekanth H. Chalasani;Molly A. Matty - 通讯作者:
Molly A. Matty
Predator-secreted sulfolipids induce fear-like defense responses in C. elegans
捕食者分泌的硫脂在秀丽隐杆线虫中诱导类似恐惧的防御反应
- DOI:
10.1101/153056 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zheng Liu;Maro J. Kariya;Christopher Chute;Amy K. Pribadi;Sarah G. Leinwand;Ada Tong;Kevin P. Curran;Neelanjan Bose;F. Schroeder;J. Srinivasan;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
A many-to-one sensory circuit encodes oxygen levels and drives respiratory behaviour in Danio rerio
斑马鱼的多对一感觉回路对氧气水平进行编码并驱动呼吸行为
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chen;G. Pao;G. Pao;Reginno Villa;Kaila Rosales;Elizabeth DePasquale;A. Groisman;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
Two parallel pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans
超声引起的秀丽隐杆线虫行为变化需要两条平行途径
- DOI:
10.1101/2021.10.29.466533 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Uri Magaram;Connor E. Weiss;Aditya Vasan;Kirthi C Reddy;J. Friend;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
C. elegans foraging as a model for understanding the neuronal basis of decision-making
- DOI:
10.1007/s00018-024-05223-1 - 发表时间:
2024-06-08 - 期刊:
- 影响因子:6.200
- 作者:
Jessica A. Haley;Sreekanth H. Chalasani - 通讯作者:
Sreekanth H. Chalasani
Sreekanth H. Chalasani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sreekanth H. Chalasani', 18)}}的其他基金
Dissecting molecular elements of threat behavior
剖析威胁行为的分子要素
- 批准号:
9365800 - 财政年份:2017
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting molecular elements of threat behavior
剖析威胁行为的分子要素
- 批准号:
10205978 - 财政年份:2017
- 资助金额:
$ 264.34万 - 项目类别:
Developing a noninvasive method to manipulate specific cell types within the mammalian brain
开发一种非侵入性方法来操纵哺乳动物大脑内的特定细胞类型
- 批准号:
9355229 - 财政年份:2016
- 资助金额:
$ 264.34万 - 项目类别:
Genetic Analysis of C. elegans Predator Avoidance
线虫捕食者回避的遗传分析
- 批准号:
8681539 - 财政年份:2013
- 资助金额:
$ 264.34万 - 项目类别:
Genetic Analysis of C. elegans Predator Avoidance
线虫捕食者回避的遗传分析
- 批准号:
8506622 - 财政年份:2013
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
10396076 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C. elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
10887010 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
9754246 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
10197766 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C. elegans
剖析线虫中整合多种输入的神经机制
- 批准号:
8586560 - 财政年份:2012
- 资助金额:
$ 264.34万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 264.34万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 264.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




