Developing a noninvasive method to manipulate specific cell types within the mammalian brain

开发一种非侵入性方法来操纵哺乳动物大脑内的特定细胞类型

基本信息

项目摘要

Summary A central challenge in neuroscience is to develop methods to manipulate specific cell types within the mammalian brain. Recent developments in optogenetics have revolutionized our ability to control the activity of both neurons and non-neuronal cells. However, this approach suffers from one drawback, the difficulty in delivery light stimulus to target cells that are located deep within the brain or the body. The Chalasani lab has recently demonstrated a noninvasive method to control the activity of neurons. They have identified a pore- forming subunit of a mechanosensitive channel (TRP-4) that responds to low-intensity ultrasound. Further, they showed that expressing this channel is specific cells renders those target cells sensitive to mechanical deformations generated by noninvasive ultrasound waves. This proposal aims to develop this approach (they have termed “sonogenetics”) to control specific cells within the mouse brain. Further, they find that this approach can be used to control the activity of mammalian neurons in vitro. They plan on using a high- throughput assay system to test whether other members of the TRP-N family are sensitive to ultrasound pulses. Additionally, they will also analyze whether altering the number of ankyrin repeats affects the ultrasound responsiveness of these channels (consistent with a recent study showing similar results in the Drosophila TRP-N channel) (Aim 1). They also plan on developing a new head device with a slot for a tiny, lightweight ultrasound transducer to deliver ultrasound stimulus to the mouse brain (Aim 2). Finally, they will test the efficacy of the sonogenetic approach in vivo using electrophysiological and behavioral analysis. They will express TRP-4 or other mechanosensitive channels in cortical PV interneurons, striatal D1 or D2 medium spiny projection neurons and control their activity in vivo. Optogenetic methods have been previously used to control these cell populations providing benchmarks for comparison. These studies will develop a noninvasive method to manipulate the activity of specific cells within the rodent brain or its body. Further, these methods can be translated into the human to target specific cell populations for therapeutic purposes.
概括 神经科学的一个核心挑战是开发操纵特定细胞类型的方法 哺乳动物的大脑。光遗传学的最新发展彻底改变了我们控制细胞活性的能力 神经元细胞和非神经元细胞。然而,这种方法有一个缺点,即难以 将光刺激传递到位于大脑或身体深处的目标细胞。查拉萨尼实验室有 最近展示了一种控制神经元活动的非侵入性方法。他们发现了一个孔隙—— 形成响应低强度超声波的机械敏感通道 (TRP-4) 亚基。此外,他们 表明表达该通道的是特定细胞,使得这些靶细胞对机械敏感 非侵入性超声波产生的变形。该提案旨在发展这种方法(他们 被称为“声遗传学”)来控制小鼠大脑内的特定细胞。此外,他们发现这 该方法可用于在体外控制哺乳动物神经元的活动。他们计划使用高 用于测试 TRP-N 家族其他成员是否对超声波敏感的通量测定系统 脉冲。此外,他们还将分析改变锚蛋白重复次数是否会影响 这些通道的超声反应性(与最近的一项研究一致,显示了类似的结果) 果蝇 TRP-N 通道)(目标 1)。他们还计划开发一种新的头部设备,带有一个用于微型、 轻型超声换能器向小鼠大脑传递超声刺激(目标 2)。最后,他们将 使用电生理学和行为分析测试体内声遗传学方法的功效。他们 将在皮质 PV 中间神经元、纹状体 D1 或 D2 介质中表达 TRP-4 或其他机械敏感通道 多刺投射神经元并控制它们在体内的活动。光遗传学方法以前曾被用来 控制这些细胞群,提供比较基准。这些研究将开发一种非侵入性 操纵啮齿动物大脑或其体内特定细胞活动的方法。此外,这些方法 可以转化为人类以靶向特定细胞群以达到治疗目的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sreekanth H. Chalasani其他文献

Identification and characterization of a skin microbiome on emCaenorhabditis elegans/em suggests environmental microbes confer cuticle protection
秀丽隐杆线虫皮肤微生物组的鉴定和表征表明环境微生物赋予角质层保护
  • DOI:
    10.1128/spectrum.00169-24
  • 发表时间:
    2024-06-25
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Nadia B. Haghani;Robert H. Lampe;Buck S. Samuel;Sreekanth H. Chalasani;Molly A. Matty
  • 通讯作者:
    Molly A. Matty
Predator-secreted sulfolipids induce fear-like defense responses in C. elegans
捕食者分泌的硫脂在秀丽隐杆线虫中诱导类似恐惧的防御反应
  • DOI:
    10.1101/153056
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng Liu;Maro J. Kariya;Christopher Chute;Amy K. Pribadi;Sarah G. Leinwand;Ada Tong;Kevin P. Curran;Neelanjan Bose;F. Schroeder;J. Srinivasan;Sreekanth H. Chalasani
  • 通讯作者:
    Sreekanth H. Chalasani
A many-to-one sensory circuit encodes oxygen levels and drives respiratory behaviour in Danio rerio
斑马鱼的多对一感觉回路对氧气水平进行编码并驱动呼吸行为
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen;G. Pao;G. Pao;Reginno Villa;Kaila Rosales;Elizabeth DePasquale;A. Groisman;Sreekanth H. Chalasani
  • 通讯作者:
    Sreekanth H. Chalasani
Two parallel pathways are required for ultrasound-evoked behavioral changes in Caenorhabditis elegans
超声引起的秀丽隐杆线虫行为变化需要两条平行途径
  • DOI:
    10.1101/2021.10.29.466533
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Uri Magaram;Connor E. Weiss;Aditya Vasan;Kirthi C Reddy;J. Friend;Sreekanth H. Chalasani
  • 通讯作者:
    Sreekanth H. Chalasani
C. elegans foraging as a model for understanding the neuronal basis of decision-making
  • DOI:
    10.1007/s00018-024-05223-1
  • 发表时间:
    2024-06-08
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Jessica A. Haley;Sreekanth H. Chalasani
  • 通讯作者:
    Sreekanth H. Chalasani

Sreekanth H. Chalasani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sreekanth H. Chalasani', 18)}}的其他基金

Sonogenetic control of neurons in a large volume of the rodent brain
啮齿动物大脑大体积神经元的声遗传学控制
  • 批准号:
    9925113
  • 财政年份:
    2020
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting molecular elements of threat behavior
剖析威胁行为的分子要素
  • 批准号:
    9365800
  • 财政年份:
    2017
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting molecular elements of threat behavior
剖析威胁行为的分子要素
  • 批准号:
    10205978
  • 财政年份:
    2017
  • 资助金额:
    $ 92.99万
  • 项目类别:
Genetic Analysis of C. elegans Predator Avoidance
线虫捕食者回避的遗传分析
  • 批准号:
    8681539
  • 财政年份:
    2013
  • 资助金额:
    $ 92.99万
  • 项目类别:
Genetic Analysis of C. elegans Predator Avoidance
线虫捕食者回避的遗传分析
  • 批准号:
    8506622
  • 财政年份:
    2013
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
  • 批准号:
    10396076
  • 财政年份:
    2012
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
  • 批准号:
    9754246
  • 财政年份:
    2012
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C. elegans
剖析线虫中整合多种输入的神经机制
  • 批准号:
    10887010
  • 财政年份:
    2012
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C.elegans
剖析线虫中整合多种输入的神经机制
  • 批准号:
    10197766
  • 财政年份:
    2012
  • 资助金额:
    $ 92.99万
  • 项目类别:
Dissecting neural mechanisms integrating multiple inputs in C. elegans
剖析线虫中整合多种输入的神经机制
  • 批准号:
    8586560
  • 财政年份:
    2012
  • 资助金额:
    $ 92.99万
  • 项目类别:

相似海外基金

The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
  • 批准号:
    10678248
  • 财政年份:
    2023
  • 资助金额:
    $ 92.99万
  • 项目类别:
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
  • 批准号:
    10681939
  • 财政年份:
    2023
  • 资助金额:
    $ 92.99万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10427574
  • 财政年份:
    2022
  • 资助金额:
    $ 92.99万
  • 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
  • 批准号:
    10609909
  • 财政年份:
    2022
  • 资助金额:
    $ 92.99万
  • 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
  • 批准号:
    10607392
  • 财政年份:
    2022
  • 资助金额:
    $ 92.99万
  • 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
  • 批准号:
    10675646
  • 财政年份:
    2022
  • 资助金额:
    $ 92.99万
  • 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
  • 批准号:
    457552
  • 财政年份:
    2021
  • 资助金额:
    $ 92.99万
  • 项目类别:
    Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
  • 批准号:
    10331361
  • 财政年份:
    2020
  • 资助金额:
    $ 92.99万
  • 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
  • 批准号:
    10623306
  • 财政年份:
    2020
  • 资助金额:
    $ 92.99万
  • 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
  • 批准号:
    10376866
  • 财政年份:
    2020
  • 资助金额:
    $ 92.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了