Molecular mechanisms underlying force transduction at cellular adhesion complexes

细胞粘附复合物力传导的分子机制

基本信息

  • 批准号:
    9926286
  • 负责人:
  • 金额:
    $ 56.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-06 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Our objective is to elucidate the molecular mechanisms by which cellular adhesion complexes form and remodel in response to mechanical load. Cell-cell and cell-matrix adhesions are a defining feature of metazoan life and are essential to the physiological function of virtually every tissue in the human body. Despite this central importance, only a few of the protein-protein interactions that make up adhesion complexes have been characterized biochemically, and even less is known about the underlying mechanisms by which these structures respond to mechanical load. This lack of quantitative data presents an unavoidable roadblock in the collective effort to understand how cells build and remodel multicellular tissues. We will use single-molecule biophysical approaches to develop a detailed understanding of how adhesion complexes templated by E-cadherin sense and transduce mechanical cues. Previously, we demonstrated that a complex of E-cadherin, β-catenin, and αE-catenin forms a minimal force-sensing unit at intercellular adhesions. Here, we build on this result to test the hypothesis that this complex lies at the heart of a mechanosensory assembly that converts small changes in input forces into dramatic alterations in adhesion architecture, size, and stability. In parallel work, we will use biophysical techniques unique to our laboratory to determine how directional interactions between proteins within adhesion complexes and filamentous (F)-actin may give rise to long-range organization in the cytoskeleton. Recently, we found that the protein vinculin, which is recruited to both cell- matrix and intercellular adhesions, forms a directionally asymmetric interaction with F-actin that is stabilized ~10- fold when load is oriented toward the pointed (-) vs. barbed (+) end of the actin filament. Preliminary data suggest that force-dependent, asymmetric binding interactions with F-actin are not unique to vinculin, and likely extend to other adhesion proteins. These observations suggest that asymmetric interactions between F-actin and proteins within adhesion complexes may play a central and previously unsuspected role in organizing cells and tissues, a hypothesis that we will test during the next funding period. Cell and developmental biological data indicate that αE-catenin plays a central role in organizing epithelial tissues through its interactions with zonula occludens-1 (ZO-1) and afadin, both of which bind F-actin and recruit other scaffolding and signaling proteins. We will perform the first detailed biochemical and biophysical characterization of the interaction of the cadherin-catenin complex with ZO-1 and afadin, and use cutting-edge imaging techniques to determine how these proteins interact in living cells. These studies will lay the foundation for a quantitative understanding of how intercellular adhesion complexes function as integrated, multifunctional force-sensing assemblies.
我们的目标是阐明细胞粘附复合物形成的分子机制, 根据机械负荷进行改造。细胞-细胞和细胞-基质粘附是后生动物的一个定义性特征 并且对人体内几乎每个组织的生理功能都是必不可少的。尽管中央 重要的是,只有少数的蛋白质-蛋白质相互作用,使粘附复合物已被 生物化学的特点,甚至更少的是知道这些结构的潜在机制, 响应机械负载。这种缺乏定量数据的情况在集体研究中造成了不可避免的障碍。 努力了解细胞如何构建和重塑多细胞组织。 我们将使用单分子生物物理方法来详细了解粘附是如何发生的。 复合物模板的E-钙粘蛋白的感觉和神经机械线索。之前,我们证明了一个 E-cadherin、β-catenin和α-E-catenin的复合物在细胞间粘附处形成最小的力感应单位。 在这里,我们基于这一结果来测试这一假设,即这种复合物位于机械感觉的核心。 将输入力的微小变化转化为粘附结构、尺寸和 稳定 在平行的工作中,我们将使用我们实验室独有的生物物理技术来确定 粘附复合物中的蛋白质与丝状(F)-肌动蛋白之间的相互作用可能引起长距离的 细胞骨架中的组织。最近,我们发现,蛋白粘着斑,这是招募到两个细胞- 基质和细胞间粘附,与F-肌动蛋白形成方向不对称的相互作用,其稳定在~10- 当载荷朝向肌动蛋白丝的尖(-)与倒刺(+)端时折叠。初步数据表明 力依赖性,与F-肌动蛋白的不对称结合相互作用并不是黏着斑蛋白所独有的, 其他粘附蛋白。这些观察结果表明,F-肌动蛋白和 粘附复合物中的蛋白质可能在组织细胞中起中心的和以前未被怀疑的作用, 组织,我们将在下一个资助期内测试这一假设。 细胞和发育生物学数据表明,α E-连环蛋白在组织上皮细胞中起着重要作用, 组织通过其与闭锁小带-1(ZO-1)和afadin的相互作用,两者都结合F-肌动蛋白并招募 其他支架和信号蛋白。我们将进行第一次详细的生物化学和生物物理 表征钙粘蛋白-连环蛋白复合物与ZO-1和afadin的相互作用,并使用尖端的 成像技术,以确定这些蛋白质如何在活细胞中相互作用。这些研究将奠定基础 为了定量地了解细胞间粘附复合物如何作为一种整合的、多功能的 力传感组件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander R Dunn其他文献

Bill Weis (1959-2023): Pioneering structural biologist and biochemist who revolutionized our understanding of cell adhesion and Wnt signaling.
Bill Weis (1959-2023):结构生物学家和生物化学家先驱,彻底改变了我们对细胞粘附和 Wnt 信号传导的理解。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    M. Peifer;Alexander R Dunn
  • 通讯作者:
    Alexander R Dunn

Alexander R Dunn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander R Dunn', 18)}}的其他基金

Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    10221729
  • 财政年份:
    2019
  • 资助金额:
    $ 56.25万
  • 项目类别:
Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    10437720
  • 财政年份:
    2019
  • 资助金额:
    $ 56.25万
  • 项目类别:
Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    10667312
  • 财政年份:
    2019
  • 资助金额:
    $ 56.25万
  • 项目类别:
Bio-AFM for combined light and atomic force imaging
用于组合光和原子力成像的生物原子力显微镜
  • 批准号:
    9074870
  • 财政年份:
    2016
  • 资助金额:
    $ 56.25万
  • 项目类别:
Molecular mechanisms underlying force sensing at intercellular junctions
细胞间连接处力传感的分子机制
  • 批准号:
    9281753
  • 财政年份:
    2016
  • 资助金额:
    $ 56.25万
  • 项目类别:
Molecular mechanisms underlying flow sensing in lymphatic endothelial cells
淋巴内皮细胞流量传感的分子机制
  • 批准号:
    8946731
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:
Biophysical mechanisms of mechanical tension sensing at cellular integrin complexes
细胞整合素复合物机械张力传感的生物物理机制
  • 批准号:
    8800174
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:
Biophysical mechanisms of mechanical tension sensing at cellular integrin complexes
细胞整合素复合物机械张力传感的生物物理机制
  • 批准号:
    9229049
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:
Understanding force-dependent binding of alpha-catenin to actin
了解 α-连环蛋白与肌动蛋白的力依赖性结合
  • 批准号:
    8964322
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:
Understanding force-dependent binding of alpha-catenin to actin
了解 α-连环蛋白与肌动蛋白的力依赖性结合
  • 批准号:
    9144812
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
  • 批准号:
    2316666
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
  • 批准号:
    2334509
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
  • 批准号:
    10662730
  • 财政年份:
    2023
  • 资助金额:
    $ 56.25万
  • 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
  • 批准号:
    1940647
  • 财政年份:
    2020
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
  • 批准号:
    19K11911
  • 财政年份:
    2019
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
  • 批准号:
    279491470
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Research Grants
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
  • 批准号:
    1453536
  • 财政年份:
    2015
  • 资助金额:
    $ 56.25万
  • 项目类别:
    Continuing Grant
The Genetic Architecture of Aggressive Behavior
攻击行为的遗传结构
  • 批准号:
    6935104
  • 财政年份:
    2005
  • 资助金额:
    $ 56.25万
  • 项目类别:
The Genetic Architecture of Aggressive Behavior
攻击行为的遗传结构
  • 批准号:
    7246470
  • 财政年份:
    2005
  • 资助金额:
    $ 56.25万
  • 项目类别:
The Genetic Architecture of Aggressive Behavior
攻击行为的遗传结构
  • 批准号:
    7065220
  • 财政年份:
    2005
  • 资助金额:
    $ 56.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了