Bioinformatics Group
生物信息学组
基本信息
- 批准号:9927582
- 负责人:
- 金额:$ 47.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBioinformaticsBiologicalBiological AssayBiological SciencesClinicalCommunitiesComplexConsumptionDNA sequencingDataData SetDatabasesDevelopmentDimensionsDiseaseEcosystemEmerging TechnologiesEngineeringEnsureExperimental DesignsFosteringFundingGoalsHigh Performance ComputingInformation SystemsInformation TechnologyInfrastructureInvestigationLab-On-A-ChipsMass Spectrum AnalysisMathematicsMeasuresMeta-AnalysisMetadataNMR SpectroscopyNational Institute of Allergy and Infectious DiseasePatternPlayPrivatizationProcessPropertyProteomeReproducibility of ResultsResearchResearch PersonnelRoleStructureSystemTechniquesTechnologyTimeU-Series Cooperative AgreementsUnited States National Institutes of HealthVariantbiological systemschromatin immunoprecipitationdata accessdata disseminationdata exchangedata managementdata qualitydata sharingdata standardsexperienceexperimental studyhigh dimensionalitymetabolomemicrobiomemultidimensional dataprogramspublic repositoryquality assurancerhosoundstatisticstooltranscriptometransmission processwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT—BIOINFORMATICS GROUP
The scale of research in the life sciences is increasing rapidly, due in part to the growing ubiquity of
“omics”. High-throughput and high-dimensional assay technologies, including variations of DNA sequencing,
array/lab-on-a-chip assays, mass spectrometry, nuclear magnetic resonance spectroscopy, and other
technologies, allow investigators to study entire genomes, transcriptomes, proteomes, metabolomes,
microbiomes, and other large-scale systems. Researchers examine biological systems holistically, looking for
patterns and emergent properties or simply cast a wide net by measuring many more variables simultaneously
in an experiment. DAIT-funded investigators are increasingly using these approaches. Advances in information
technology also drive the increasing scale of research by facilitating the creation, sharing, pooling, and analysis
of large databases of research data. Bioinformatics meets these scalability opportunities and challenges by
applying techniques from computing, statistics, mathematics, and engineering to the management, analysis,
and dissemination of large and or complex biological data sets.
The Bioinformatics Group (BG) will serve as a core component of the DAIT Statistical and Clinical
Coordinating Center and will help maximize the value of data collected by DAIT-sponsored clinical and
mechanistic investigators by fostering long-term capacity for data sharing and utilization by the general
research community. Building on Rho's extensive experience as a Statistical and Clinical Coordinating Center
for a number of NIH and DAIT research networks, the BG will play a role in every stage of the data lifecycle:
During study planning the BG will provide expert guidance to investigators on experimental design, emerging
technologies, and analytical approaches, particularly with regards to the application of omics and other high-
dimensional data types. The team will collaborate with investigators and other bioinformatics organizations to
develop data standards for clinical and mechanistic data and apply those to DAIT study data sets and
information systems developed by the center. Implementing these standards will ensure that data are
consistently structured and annotated and will make them more easily shared and pooled. The BG will provide
tools, high performance computing infrastructure, and analytical support for high-throughput and high-
dimensional data sets. Finally, it will serve as the primary conduit for data dissemination from supported DAIT
programs through the development of study portals for live data access and transfer of final study data sets to
public repositories, such as ImmPort and TrialShare.
项目总结/摘要-生物信息学组
生命科学研究的规模正在迅速扩大,部分原因是生物技术的日益普及。
“omics”。高通量和高维分析技术,包括DNA测序的变化,
阵列/芯片实验室分析、质谱分析、核磁共振光谱分析等
技术,使研究人员能够研究整个基因组,转录组,蛋白质组,代谢组,
微生物组和其他大规模系统。研究人员全面检查生物系统,寻找
或者简单地通过同时测量更多的变量来撒一张大网
在一项实验中。DAIT资助的调查人员越来越多地使用这些方法。先进的信息
技术还通过促进创造、共享、汇集和分析,推动研究规模不断扩大
大型数据库的研究数据。生物信息学满足这些可扩展性的机会和挑战,
将计算、统计、数学和工程技术应用于管理、分析、
以及大型和/或复杂生物数据集的传播。
生物信息学小组(BG)将作为DAIT统计和临床研究的核心组成部分,
协调中心,并将有助于最大限度地发挥DAIT申办的临床和
机械调查员通过培养长期的数据共享能力和一般
研究社区。基于Rho作为统计和临床协调中心的丰富经验
对于一些NIH和DAIT研究网络,BG将在数据生命周期的每个阶段发挥作用:
在研究计划期间,BG将为研究者提供有关实验设计的专家指导,
技术和分析方法,特别是关于组学和其他高
多维数据类型。该团队将与研究人员和其他生物信息学组织合作,
制定临床和机制数据的数据标准,并将其应用于DAIT研究数据集,
中心开发的信息系统。实施这些标准将确保数据
一致的结构和注释,并将使它们更容易共享和汇集。BG将提供
工具、高性能计算基础设施,以及对高吞吐量和高
维度数据集。最后,它将作为从所支持的DAIT传播数据的主要渠道
通过开发实时数据访问和最终研究数据集传输的研究门户网站,
公共存储库,如ImmPort和TrialShare。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petra LeBeau其他文献
Petra LeBeau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 47.65万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 47.65万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 47.65万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 47.65万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 47.65万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 47.65万 - 项目类别:
Discovery Grants Program - Individual