Pathomic Predictors of Prostate Cancer Progression
前列腺癌进展的病理预测因子
基本信息
- 批准号:9976347
- 负责人:
- 金额:$ 91.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-16 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ApoptosisBenignBiologicalBiological MarkersBiopsyCD4 Positive T LymphocytesCancer EtiologyCancer PatientCell CycleCellsCessation of lifeCharacteristicsClinicalDNA Sequence AlterationDataDiagnosisDiseaseEnvironmentEnvironmental Risk FactorEpithelialEpitheliumEventFinancial costFormalinGenomicsGleason Grade for Prostate CancerHeterogeneityHistologicHypoxiaImageImaging DeviceImmuneImmune responseImmunofluorescence ImmunologicIn SituIndolentInfiltrationLeadLinkLungMachine LearningMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of prostateMethodologyMethodsMolecularMolecular AnalysisMolecular EvolutionMolecular StructureMonitorMorbidity - disease rateMorphologyNeighborhoodsNeoplasm MetastasisPI3K/AKTPSA screeningParaffin EmbeddingPathologyPathway interactionsPatient observationPatient-Focused OutcomesPatientsPatternPhysiciansPrevalenceProcessProstate-Specific AntigenProstatectomyProstatic NeoplasmsProteinsProteomicsRiskRoleScreening for Prostate CancerScreening procedureSensitivity and SpecificitySignal PathwayStainsSystemTechniquesTextureTissue MicroarrayTumor-infiltrating immune cellsUncertaintyadverse outcomeangiogenesisbasecancer carecandidate markercell typeclinical decision-makingcohortconvolutional neural networkcostdeep learningdensityearly screeningethnic diversityfollow-upimprovedmalignant breast neoplasmmenmolecular pathologymolecular phenotypemolecular subtypesnovelpatient stratificationprognosticprostate cancer progressionserum PSAsuccesstooltumortumor hypoxiatumor metabolismtumor microenvironmenttumor progression
项目摘要
Abstract
Recent studies suggest that in the U.S. prostate cancer is over-detected and over-treated resulting in
significant morbidity and financial costs. These problems are the product of poor sensitivity and specificity
serum Prostate Specific Antigen (PSA) as a screening tool, leading to unnecessary biopsies that find small and
predominantly indolent prostate tumors. While many prostate cancers should be managed with active
surveillance, uncertainties surrounding available clinical tools of aggressiveness (such as PSA, Gleason score
and clinical stage) will often drive patients and physicians to treatment. Attempts to improve prognostication
using candidate biomarkers, mostly discovered from genomic analyses of large pieces of cancers, have had
few successes, and available molecular tools provide only modest prediction, at best.
An alternative to the genomic driver focus is that a combination of molecular events, under the influence of
the tumor microenvironment, drive tumor’s molecular evolution and progression. Consequently, analysis of
tumor characteristics detectable in pathomic data, such as heterogeneity of expression subtypes, amount of
stroma, extent of microenvironmental heterogeneity, extent of immune infiltration, or extent of hypoxia, may
ultimately lead to better patient stratification. Our proposal fundamentally centers around the most critical
clinical question in early prostate cancer that is the basis for clinical decision making: Can we identify
proteomic, imaging, and/or microenvironment features that distinguish those aggressive cancers that
will progress to cause harm from benign cancers that can be safely monitored by watchful waiting?
To examine the links between the heterogeneity of early, screen-detected prostate cancers and likelihood of
progression, we will interrogate a retrospective set of 225 prostatectomy patients. In Aim 1, we will use GE’s
hyperplexed immune-pathology platform (Cell DIVE) to profile over 50 proteins at the cellular and subcellular
level along with matrix components that define the microenvironments with the cells present in this matrix. In
Aim 2, we will focus on single-cell level data and systematically extract the prevalence of the diverse cell
subtypes found within these tumors. Cells will be typed along traditional axes (e.g. epithelial, CD4+ T-cells). In
addition, we will use molecular and structural characteristics to define novel subtypes. Features associated
with cell types (e.g. existence, prevalence, diversity) will be used alone and in combination with Gleason
grading to distinguish patients with aggressive tumors that are likely to progress. Aim 3 will focus on
neighborhood and regional analyses, particularly on developing approaches to extract tumor
microenvironmental characteristics that have demonstrated linkages to progression (hypoxia, stromal
reactivity, immune cell patterning). Using a diverse set of these features, alongside deep learning techniques
on primary images, we will develop classifiers distinguishing aggressive and benign tumors. Finally, in Aim 4
we will validate classifiers in large cohorts.
摘要
最近的研究表明,在美国,前列腺癌被过度检测和过度治疗,导致
显著的发病率和经济成本。这些问题是灵敏度和特异性差的产物
血清前列腺特异性抗原(PSA)作为筛查工具,导致不必要的活检,
主要是惰性前列腺肿瘤。虽然许多前列腺癌应该用积极的药物来治疗,
监测,围绕可用的临床工具的攻击性(如PSA,格里森评分)的不确定性
和临床阶段)通常会驱使患者和医生进行治疗。改进精确度的尝试
使用候选生物标志物,主要是从大块癌症的基因组分析中发现的,
很少有成功,可用的分子工具充其量只能提供适度的预测。
基因组驱动焦点的另一种选择是,分子事件的组合,在
肿瘤微环境,驱动肿瘤的分子进化和进展。因此,分析
在病理组学数据中可检测的肿瘤特征,例如表达亚型的异质性,
间质、微环境异质性的程度、免疫浸润的程度或缺氧的程度,可以
最终实现更好的患者分层。我们的建议基本上围绕着最关键的
早期前列腺癌的临床问题是临床决策的基础:我们能否识别出
蛋白质组学、成像和/或微环境特征,以区分那些
会不会发展到可以通过观察等待安全监测的良性癌症的危害?
为了研究早期筛查发现的前列腺癌异质性与前列腺癌的可能性之间的联系,
进展,我们将询问一组回顾性的225例直肠癌切除术患者。在目标1中,我们将使用GE的
Hyperplexed免疫病理学平台(Cell DIVE),用于分析细胞和亚细胞中的50多种蛋白质
与基质成分一起沿着,所述基质成分限定了存在于该基质中的细胞的微环境。在
目标2,我们将专注于单细胞水平的数据,并系统地提取多样性细胞的患病率
在这些肿瘤中发现的亚型。将沿传统轴(例如上皮细胞、CD 4 + T细胞)对细胞进行沿着分型。在
此外,我们将使用分子和结构特征来定义新的亚型。相关联的特征
与细胞类型(例如存在、流行、多样性)相关的数据将单独使用,并与Gleason联合使用
分级以区分可能进展的侵袭性肿瘤患者。目标3将侧重于
邻域和区域分析,特别是开发提取肿瘤的方法
已证明与进展相关的微环境特征(缺氧、基质
反应性、免疫细胞图案化)。使用这些功能的多样性,以及深度学习技术
在原始图像上,我们将开发区分侵袭性和良性肿瘤的分类器。最后,目标4
我们将在大型队列中验证分类器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PARAG Kumar MALLICK其他文献
PARAG Kumar MALLICK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PARAG Kumar MALLICK', 18)}}的其他基金
Mass spectrometry and multiplexed immunofluorescence imaging of metabolic and proteomic contributors to selective neuronal vulnerability in Alzheimer's disease
阿尔茨海默病选择性神经元脆弱性的代谢和蛋白质组学贡献者的质谱和多重免疫荧光成像
- 批准号:
10704682 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
Mass spectrometry and multiplexed immunofluorescence imaging of metabolic and proteomic contributors to selective neuronal vulnerability in Alzheimer's disease
阿尔茨海默病选择性神经元脆弱性的代谢和蛋白质组学贡献者的质谱分析和多重免疫荧光成像
- 批准号:
10515902 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:
Pathomic Predictors of Prostate Cancer Progression
前列腺癌进展的病理预测因子
- 批准号:
10380675 - 财政年份:2020
- 资助金额:
$ 91.04万 - 项目类别:
Pathomic Predictors of Prostate Cancer Progression
前列腺癌进展的病理预测因子
- 批准号:
10604332 - 财政年份:2020
- 资助金额:
$ 91.04万 - 项目类别:
Developing a single cell growth monitor for classifying therapeutic response
开发用于对治疗反应进行分类的单细胞生长监测器
- 批准号:
8046340 - 财政年份:2009
- 资助金额:
$ 91.04万 - 项目类别:
Developing a single cell growth monitor for classifying therapeutic response
开发用于对治疗反应进行分类的单细胞生长监测器
- 批准号:
7800404 - 财政年份:2009
- 资助金额:
$ 91.04万 - 项目类别:
Developing a single cell growth monitor for classifying therapeutic response
开发用于对治疗反应进行分类的单细胞生长监测器
- 批准号:
7586487 - 财政年份:2009
- 资助金额:
$ 91.04万 - 项目类别:
相似海外基金
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Learners to LeAders in benign Urology, benign Nephrology, and non-Cancer Hematology
良性泌尿外科、良性肾脏病学和非癌症血液学领域的学习者和领导者
- 批准号:
10726042 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
- 批准号:
10607151 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Development of a medical device to resolve benign esophageal stricture by heating and traction
开发通过加热和牵引解决良性食管狭窄的医疗设备
- 批准号:
23H03765 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of benign/malignant differentiation method for thyroid follicular tumor using organoids
利用类器官开发甲状腺滤泡性肿瘤良恶性鉴别方法
- 批准号:
23K08075 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms of p53 Engagement and Action at the Benign-to-Malignant Transition in Sporadic Tumorigenesis
p53在散发性肿瘤发生良性向恶性转变中的参与和作用机制
- 批准号:
10720034 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 91.04万 - 项目类别:
Standard Grant
Identifying the role of the gut microbiome in the etiology of benign breast disease
确定肠道微生物组在良性乳腺疾病病因学中的作用
- 批准号:
10359959 - 财政年份:2022
- 资助金额:
$ 91.04万 - 项目类别:














{{item.name}}会员




