Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
基本信息
- 批准号:9975891
- 负责人:
- 金额:$ 50.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAffectBioenergeticsBiological AssayBiologyBiometryBirthBlood PressureCardiacCardiac MyocytesCardiac developmentCardiomyopathiesChaperone Protein InhibitionCongenital Heart DefectsCouplingDataDevelopmentDiseaseElectron TransportEmbryoEnvironmentEquilibriumExposure toFutureGoalsHealthHeartHumanHypoxiaIn VitroInner mitochondrial membraneLifeLung diseasesMeasuresMetabolismMitochondriaModelingMolecular ChaperonesMusMuscle CellsNeonatalOrganellesOutputOxygenPathologyPathway interactionsPermeabilityPharmacologyPhysiologicalPhysiologyPlayProcessProductionProliferatingProteinsPublishingReactive Oxygen SpeciesReportingRoleSpecimenStructureSystemTechniquesTestingbaseclinically relevantcongenital heart disordercyclophilin Dexperimental studyfallsfatty acid oxidationgenetic approachheart functionhypoxia neonatorumin vivoinfection riskneonatal exposureneonatenovelprematurepulmonary functiontargeted treatmentuptake
项目摘要
Birth is the most abrupt transition during life, and the neonatal heart must accommodate to this dramatic
change in environment by increasing its output to the body. Exposure to higher levels of oxygen at birth likely
activates intracellular pathways that allow cardiac myocytes to rapidly proliferate and then differentiate to
cause the final maturation of cardiac structure and function that is required for this increased output and
survival. However, major gaps in our understanding of this process remain.
It is apparent that mitochondria play an important role in this process. We have found that mitochondria
regulate cardiac development in the embryo and neonate and that the mitochondrial chaperone protein,
cyclophilin D (CyPD), regulates changes in mitochondrial function and reactive oxygen species (ROS)
production that control cardiomyocyte proliferation and differentiation. Our preliminary data have begun to
define changes in this CyPD-mitochondrial-ROS-differentiation pathway that occur in the neonatal heart. In
addition, these data provide novel models to dissect the mechanisms of this pathway.
These findings suggest the hypothesis that increased O2 at birth initiates a rise and then fall in CyPD
activity, which regulates mitochondrial function, particularly ROS production, to control neonatal myocyte
proliferation and differentiation and cardiac function. The scientific premise of this proposal is supported by
data discussed above, but the mechanisms involved have not been fully elucidated. Our overall goal is to use
our expertise in cardiac development and mitochondrial biology to dissect the mechanisms that control this
important physiologic pathway in the neonatal heart and determine if CyPD inhibition can be used to
ameliorate pathology in clinically relevant models. To achieve these goals, we propose 3 Specific Aims: 1.
Determine how CyPD controls the neonatal cardiac mitochondrial-ROS-differentiation pathway. 2. Determine
effects of disrupting CyPD activity in the neonatal heart. 3. Determine effects of hypoxia on the neonatal CyPD-
mitochondria-ROS-differentiation pathway.
The proposed experiments use a novel set of pharmacologic and genetic approaches that manipulate
oxygen, CyPD, inner mitochondrial membrane coupling, and ROS in the neonatal heart. Specimens will be
processed using a battery of assays to measure CyPD expression, acetylation, and activity; mitochondrial
structure and function, ETC activity and assembly, ROS production; myocyte proliferation and differentiation;
and cardiac function. Our team has unique expertise in cardiac, developmental, and mitochondrial biology and
in biostatistics and we employ novel concepts and cutting-edge techniques to study mitochondria during late
cardiac development. The anticipated results will significantly change our understanding of bioenergetics in the
neonatal heart and will lead to future studies that use mitochondrial targeted therapies to enhance cardiac
function and cardiac myocyte differentiation in a variety of disease states in the neonatal and mature heart.
出生是一生中最突然的转变,新生儿的心脏必须适应这种戏剧性的变化
通过增加对身体的输出来改变环境。出生时可能接触较高水平的氧气
激活细胞内通路,使心肌细胞快速增殖,然后分化为
导致输出量增加所需的心脏结构和功能最终成熟
生存。然而,我们对这一过程的理解仍然存在重大差距。
显然,线粒体在此过程中发挥着重要作用。我们发现线粒体
调节胚胎和新生儿的心脏发育,线粒体伴侣蛋白,
亲环蛋白 D (CyPD),调节线粒体功能和活性氧 (ROS) 的变化
产生控制心肌细胞增殖和分化的物质。我们的初步数据已经开始
定义新生儿心脏中发生的 CyPD-线粒体-ROS 分化途径的变化。在
此外,这些数据提供了新的模型来剖析该途径的机制。
这些发现表明出生时氧气含量增加会导致 CyPD 升高然后下降的假设
活性,调节线粒体功能,特别是 ROS 产生,以控制新生儿肌细胞
增殖和分化与心脏功能。该提案的科学前提得到以下支持:
上面讨论了数据,但所涉及的机制尚未完全阐明。我们的总体目标是使用
我们在心脏发育和线粒体生物学方面的专业知识来剖析控制这一过程的机制
新生儿心脏中重要的生理通路,并确定 CyPD 抑制是否可用于
改善临床相关模型的病理学。为了实现这些目标,我们提出 3 个具体目标: 1.
确定 CyPD 如何控制新生儿心脏线粒体 ROS 分化途径。 2. 确定
破坏新生儿心脏中 CyPD 活性的影响。 3. 确定缺氧对新生儿 CyPD-的影响
线粒体-ROS-分化途径。
拟议的实验使用了一套新颖的药理学和遗传学方法来操纵
新生儿心脏中的氧气、CyPD、线粒体内膜偶联和 ROS。标本将是
使用一系列测定法进行处理以测量 CyPD 表达、乙酰化和活性;线粒体
结构和功能、ETC活性和组装、ROS产生;心肌细胞增殖和分化;
和心脏功能。我们的团队在心脏、发育和线粒体生物学方面拥有独特的专业知识,
在生物统计学中,我们采用新颖的概念和尖端技术来研究线粒体
心脏发育。预期的结果将显着改变我们对生物能学的理解
新生儿心脏,并将导致未来使用线粒体靶向治疗来增强心脏功能的研究
新生儿和成熟心脏在各种疾病状态下的功能和心肌细胞分化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George A Porter其他文献
Humoral Regulation of Embryonic Cardiac Function
胚胎心脏功能的体液调节
- DOI:
10.1203/00006450-199904020-00177 - 发表时间:
1999-04-01 - 期刊:
- 影响因子:3.100
- 作者:
George A Porter;Scott A Rivkees - 通讯作者:
Scott A Rivkees
George A Porter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George A Porter', 18)}}的其他基金
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
9815629 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
10472065 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
10242768 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6609725 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6898270 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6756517 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6514036 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
7074043 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 50.55万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists