Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
基本信息
- 批准号:10242768
- 负责人:
- 金额:$ 50.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAffectBioenergeticsBiological AssayBiologyBiometryBirthBlood PressureCardiacCardiac MyocytesCardiac developmentCardiomyopathiesChaperone Protein InhibitionCongenital Heart DefectsCouplingDataDevelopmentDiseaseElectron TransportEmbryoEnvironmentEquilibriumExposure toFutureGoalsHealthHeartHumanHypoxiaIn VitroInner mitochondrial membraneLifeLung diseasesMeasuresMetabolismMitochondriaModelingMolecular ChaperonesMuscle CellsNeonatalOrganellesOutputOxygenPathologyPathway interactionsPermeabilityPharmacologyPhysiologicalPhysiologyPlayProcessProductionProliferatingProteinsPublishingReactive Oxygen SpeciesReportingRoleSpecimenStructureSystemTechniquesTestingbaseclinically relevantcongenital heart disordercyclophilin Dexperimental studyfallsfatty acid oxidationgenetic approachheart functionhypoxia neonatorumin vivoinfection riskneonatal exposureneonatal miceneonatenovelprematurepulmonary functiontargeted treatmentuptake
项目摘要
Birth is the most abrupt transition during life, and the neonatal heart must accommodate to this dramatic
change in environment by increasing its output to the body. Exposure to higher levels of oxygen at birth likely
activates intracellular pathways that allow cardiac myocytes to rapidly proliferate and then differentiate to
cause the final maturation of cardiac structure and function that is required for this increased output and
survival. However, major gaps in our understanding of this process remain.
It is apparent that mitochondria play an important role in this process. We have found that mitochondria
regulate cardiac development in the embryo and neonate and that the mitochondrial chaperone protein,
cyclophilin D (CyPD), regulates changes in mitochondrial function and reactive oxygen species (ROS)
production that control cardiomyocyte proliferation and differentiation. Our preliminary data have begun to
define changes in this CyPD-mitochondrial-ROS-differentiation pathway that occur in the neonatal heart. In
addition, these data provide novel models to dissect the mechanisms of this pathway.
These findings suggest the hypothesis that increased O2 at birth initiates a rise and then fall in CyPD
activity, which regulates mitochondrial function, particularly ROS production, to control neonatal myocyte
proliferation and differentiation and cardiac function. The scientific premise of this proposal is supported by
data discussed above, but the mechanisms involved have not been fully elucidated. Our overall goal is to use
our expertise in cardiac development and mitochondrial biology to dissect the mechanisms that control this
important physiologic pathway in the neonatal heart and determine if CyPD inhibition can be used to
ameliorate pathology in clinically relevant models. To achieve these goals, we propose 3 Specific Aims: 1.
Determine how CyPD controls the neonatal cardiac mitochondrial-ROS-differentiation pathway. 2. Determine
effects of disrupting CyPD activity in the neonatal heart. 3. Determine effects of hypoxia on the neonatal CyPD-
mitochondria-ROS-differentiation pathway.
The proposed experiments use a novel set of pharmacologic and genetic approaches that manipulate
oxygen, CyPD, inner mitochondrial membrane coupling, and ROS in the neonatal heart. Specimens will be
processed using a battery of assays to measure CyPD expression, acetylation, and activity; mitochondrial
structure and function, ETC activity and assembly, ROS production; myocyte proliferation and differentiation;
and cardiac function. Our team has unique expertise in cardiac, developmental, and mitochondrial biology and
in biostatistics and we employ novel concepts and cutting-edge techniques to study mitochondria during late
cardiac development. The anticipated results will significantly change our understanding of bioenergetics in the
neonatal heart and will lead to future studies that use mitochondrial targeted therapies to enhance cardiac
function and cardiac myocyte differentiation in a variety of disease states in the neonatal and mature heart.
出生是生命中最突然的过渡,新生儿的心必须适应这种戏剧性
通过增加对身体的输出来改变环境。出生时暴露于较高水平的氧气
激活细胞内途径,使心肌细胞快速增殖,然后区分到
导致这种增加的产出所需的心脏结构和功能的最终成熟
生存。但是,我们对这一过程的理解的主要差距仍然存在。
显然,线粒体在此过程中起着重要作用。我们发现线粒体
调节胚胎和新生儿的心脏发育,并指出线粒体伴侣蛋白,
环磷脂D(CYPD)调节线粒体功能的变化和活性氧(ROS)
控制心肌细胞增殖和分化。我们的初步数据已经开始
定义了这种新生儿心脏中发生的CYPD-Mitochrial-Ros-差异途径的变化。在
此外,这些数据还提供了新型模型来剖析该途径的机制。
这些发现表明,假设出生时增加的O2会增加,然后落入CYPD。
调节线粒体功能,尤其是ROS产生的活动,以控制新生儿肌细胞
增殖和分化以及心脏功能。该提议的科学前提得到
上面讨论的数据,但涉及的机制尚未完全阐明。我们的总体目标是使用
我们在心脏发展和线粒体生物学方面的专业知识,以剖析控制这一点的机制
新生儿心脏中的重要生理途径,并确定CYPD抑制是否可以用于
在临床相关模型中改善病理。为了实现这些目标,我们提出了3个具体目标:1。
确定CYPD如何控制新生儿心脏线粒体-ROS分化途径。 2。确定
破坏新生儿心脏中CYPD活性的影响。 3。确定缺氧对新生儿CYPD-的影响
线粒体-ROS分化途径。
提出的实验使用了操纵的新型药物和遗传方法
氧,CYPD,内部线粒体膜耦合和新生儿心脏中的ROS。标本将是
使用一系列测定法处理CYPD表达,乙酰化和活性;线粒体
结构和功能等活动和组装,ROS产生;心肌增殖和分化;
和心脏功能。我们的团队在心脏,发育和线粒体生物学方面具有独特的专业知识,
在生物统计学方面,我们采用新颖的概念和尖端技术来研究线粒体
心脏发展。预期的结果将大大改变我们对生物能学的理解
新生儿心脏,将导致未来的研究使用线粒体靶向疗法来增强心脏
新生儿和成熟心脏中多种疾病状态的功能和心肌细胞分化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George A Porter其他文献
George A Porter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George A Porter', 18)}}的其他基金
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
9975891 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
9815629 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
10472065 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6609725 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6898270 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6756517 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6514036 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
7074043 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Type 2 diabetes risk variant effects on mitochondrial (patho)physiology
2 型糖尿病风险变异对线粒体(病理)生理学的影响
- 批准号:
10717519 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Acetyl CoA Carboxylase in the Metabolic Control of Inflammation
乙酰辅酶A羧化酶在炎症代谢控制中的作用
- 批准号:
10660439 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10342557 - 财政年份:2022
- 资助金额:
$ 50.55万 - 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10543478 - 财政年份:2022
- 资助金额:
$ 50.55万 - 项目类别: