Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
基本信息
- 批准号:9976544
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAnabolismAnaerobic BacteriaAssimilationsBiologicalBiomassClimateCollaborationsCommunitiesConsumptionDataDatabasesDetectionDevelopmentDevelopment PlansDevicesEventFrequenciesFresh WaterGene ExpressionGenesGeneticGoalsGreat Lakes RegionGrowthHealthHumanIn SituLeadLocationMeasurementMethodsMicrocystisModelingMolecularMonitorMunicipalitiesNatural ResourcesNutrientOceansOutputOxygenParticulatePhasePhosphorusPhysiologic pulsePropertyPublic HealthResearch PersonnelResearch PriorityResolutionSamplingScientistSeveritiesSolidStructureSystemTechnologyTemperatureTimeToxic effectToxinWaterWorkanthropogenesisbasebiophysical modelclimate changeclimate impactdata streamsdrinking waterexperimental studyharmful algal bloomsimprovedimproved outcomeland uselocal economymicrocystinnovelportabilitypredictive modelingprogramsremote sensingresponsesensorspatiotemporaltoxic bloomtrendwater qualitywater testingweb page
项目摘要
Abstract/Project Summary
Cyanobacterial harmful algal blooms (cHABs) have become more frequent and intense over the past few
decades and are projected to continue to increase in severity and toxicity due to a warming climate and
anthropogenically-enhanced nutrient loading. As such, detecting and monitoring cHAB development and
toxicity are of growing importance, especially for freshwater systems such as the Laurentian Great Lakes that
supply drinking water to many municipalities. Traditional sampling and analysis methods are time-consuming,
labor intensive, and generally implemented on only a weekly or bi-weekly basis, which may fail to detect
ephemeral yet highly toxic bloom events. Fortunately, novel, fit-for-purpose detection technologies are
becoming available to address previous constraints by providing near-real time data.
This project directly addresses four research priorities listed in the COHH3 RFA: (1) compare and
correlate current observing systems for monitoring ocean and Great Lakes properties including Harmful Algal
Blooms, (2) evaluate long-term field application potential of newly developing in situ sensors for monitoring
ocean and Great Lakes properties, (3) evaluate real-time, in-water observations of physicochemical
properties, as well as the detection of HAB species and toxins, to provide data streams for assimilation by
predictive models, (4) develop appropriate and efficient monitoring strategies for algal toxins (particularly in
drinking water) that are protective of public health. The specific aims of the proposed project are to
integrate in-situ sensing and sampling technologies with data assimilation strategies to improve
forecast accuracy, provide regional stakeholders with advanced warning of cHAB development and
toxic events, and evaluate the impacts of climate change on cHABs and internal phosphorus loading
in Lake Erie. We will accomplish these aims by integrating an autonomous, in-situ Environmental Sample
Processor, Solid Phase Adsorption Toxin Tracking devices, water quality probes, and field-portable sampling
methods, along with satellite remote sensing with the broader outcome of improving bloom forecasting models
and to develop a more timely and complete spatio-temporal picture of developing cHAB toxicity and biomass
as well as internal phosphorus loading in Lake Erie. Collectively, GLERL's long-term water quality monitoring
and NOAA's advanced cHAB forecasting model (HAB tracker), which integrates satellite data,
physicochemical, biological, molecular, and toxicity (this project) data to forecast bloom location, size and
toxicity with a 5-day lead time, will facilitate informed, timely decisions to reduce the impacts of toxic cHABs on
public health, natural resources, and local economies. Project outputs will also contribute to the Center
Program's goal of better understanding the influence of climate change on the frequency and severity of
cHABs in Lake Erie and other Great Lakes' regions, and thereby inform long-term planning for development of
land use as well as management and mitigation strategies.
摘要/项目摘要
在过去的几个
数十年,预计由于气候变暖和
人为增强的营养负荷。因此,检测和监视CHAB的开发以及
毒性越来越重要,尤其是对于诸如laurentian大湖泊等淡水系统
向许多市政当局提供饮用水。传统的抽样和分析方法是耗时的,
劳动密集型,通常仅每周或每两周实施,这可能无法检测到
短暂而有毒的花朵事件。幸运的是,新颖的,适合用途的检测技术是
通过提供近乎真实的时间数据来解决以前的约束。
该项目直接解决了COHH3 RFA中列出的四个研究优先级:(1)比较和比较和
将目前的观察系统与监测海洋和大湖泊特性(包括有害藻类)相关联
Blooms,(2)评估新开发的原位传感器以监测的长期现场应用潜力
海洋和大湖区的特性,(3)评估物理化学的实时,水中观察
特性以及HAB物种和毒素的检测,以提供数据流以通过
预测模型,(4)为藻类毒素制定适当有效的监测策略(尤其是在
饮用水)保护公共卫生。拟议项目的具体目的是
将原位感测和采样技术与数据同化策略相结合
预测准确性,向区域利益相关者提供有关CHAB开发的高级警告和
有毒事件,并评估气候变化对CHAB和内部磷的影响
在伊利湖。我们将通过整合一个自主,原位环境样本来实现这些目标
处理器,固相吸附毒素跟踪设备,水质探针和现场携带的采样
方法,以及卫星遥感以及改进开花预测模型的更广泛结果
并开发出开发CHAB毒性和生物量的更及时,更完整的时空图片
以及伊利湖的内部磷载荷。总体而言,格莱尔的长期水质监测
以及NOAA的高级CHAB预测模型(HAB Tracker),该模型集成了卫星数据,
物理化学,生物学,分子和毒性(此项目)数据,以预测布鲁姆的位置,大小和
有5天的交货时间的毒性将有助于及时,及时的决定,以减少有毒的CHAB的影响
公共卫生,自然资源和地方经济。项目输出也将为中心做出贡献
计划的目标是更好地理解气候变化对频率和严重性的影响
伊利湖和其他大湖地区的CHAB,从而为长期计划提供了开发
土地使用以及管理和缓解策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Bridgeman其他文献
Thomas Bridgeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Bridgeman', 18)}}的其他基金
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
- 批准号:
10427317 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
- 批准号:
9789306 - 财政年份:
- 资助金额:
$ 3.46万 - 项目类别:
相似国自然基金
基于互作转录组学及代谢组学研究重金属吸附过程中真菌-微藻共生系统的协同作用机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
LncRNA H19通过海绵吸附miR-130调控FGF-8/BMP-2 在类风湿关节炎成纤维样滑膜细胞中的机制研究
- 批准号:81801620
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
共代谢降解土壤中强介质吸附型抗生素的微生物学机制研究
- 批准号:41877058
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
基于组学的废渣堆场重金属抗性菌株响应机理及吸附与浸出特性研究
- 批准号:51774129
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
具有离子液体功能性基团的新型纳米多孔纤维素微球的构建及其对桑叶中活性成分的吸附机理研究
- 批准号:31600461
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 3.46万 - 项目类别:
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
- 批准号:
10427317 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
RAPID PROTEIN PURIFICATION BY POLYMER BRUSH-MODIFIED MEMBRANES
通过聚合物刷修饰膜快速纯化蛋白质
- 批准号:
7924257 - 财政年份:2009
- 资助金额:
$ 3.46万 - 项目类别:
RAPID PROTEIN PURIFICATION BY POLYMER BRUSH-MODIFIED MEMBRANES
通过聚合物刷修饰膜快速纯化蛋白质
- 批准号:
7526013 - 财政年份:2008
- 资助金额:
$ 3.46万 - 项目类别:
RAPID PROTEIN PURIFICATION BY POLYMER BRUSH-MODIFIED MEMBRANES
通过聚合物刷修饰膜快速纯化蛋白质
- 批准号:
7665385 - 财政年份:2008
- 资助金额:
$ 3.46万 - 项目类别: