Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
基本信息
- 批准号:9976544
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAnabolismAnaerobic BacteriaAssimilationsBiologicalBiomassClimateCollaborationsCommunitiesConsumptionDataDatabasesDetectionDevelopmentDevelopment PlansDevicesEventFrequenciesFresh WaterGene ExpressionGenesGeneticGoalsGreat Lakes RegionGrowthHealthHumanIn SituLeadLocationMeasurementMethodsMicrocystisModelingMolecularMonitorMunicipalitiesNatural ResourcesNutrientOceansOutputOxygenParticulatePhasePhosphorusPhysiologic pulsePropertyPublic HealthResearch PersonnelResearch PriorityResolutionSamplingScientistSeveritiesSolidStructureSystemTechnologyTemperatureTimeToxic effectToxinWaterWorkanthropogenesisbasebiophysical modelclimate changeclimate impactdata streamsdrinking waterexperimental studyharmful algal bloomsimprovedimproved outcomeland uselocal economymicrocystinnovelportabilitypredictive modelingprogramsremote sensingresponsesensorspatiotemporaltoxic bloomtrendwater qualitywater testingweb page
项目摘要
Abstract/Project Summary
Cyanobacterial harmful algal blooms (cHABs) have become more frequent and intense over the past few
decades and are projected to continue to increase in severity and toxicity due to a warming climate and
anthropogenically-enhanced nutrient loading. As such, detecting and monitoring cHAB development and
toxicity are of growing importance, especially for freshwater systems such as the Laurentian Great Lakes that
supply drinking water to many municipalities. Traditional sampling and analysis methods are time-consuming,
labor intensive, and generally implemented on only a weekly or bi-weekly basis, which may fail to detect
ephemeral yet highly toxic bloom events. Fortunately, novel, fit-for-purpose detection technologies are
becoming available to address previous constraints by providing near-real time data.
This project directly addresses four research priorities listed in the COHH3 RFA: (1) compare and
correlate current observing systems for monitoring ocean and Great Lakes properties including Harmful Algal
Blooms, (2) evaluate long-term field application potential of newly developing in situ sensors for monitoring
ocean and Great Lakes properties, (3) evaluate real-time, in-water observations of physicochemical
properties, as well as the detection of HAB species and toxins, to provide data streams for assimilation by
predictive models, (4) develop appropriate and efficient monitoring strategies for algal toxins (particularly in
drinking water) that are protective of public health. The specific aims of the proposed project are to
integrate in-situ sensing and sampling technologies with data assimilation strategies to improve
forecast accuracy, provide regional stakeholders with advanced warning of cHAB development and
toxic events, and evaluate the impacts of climate change on cHABs and internal phosphorus loading
in Lake Erie. We will accomplish these aims by integrating an autonomous, in-situ Environmental Sample
Processor, Solid Phase Adsorption Toxin Tracking devices, water quality probes, and field-portable sampling
methods, along with satellite remote sensing with the broader outcome of improving bloom forecasting models
and to develop a more timely and complete spatio-temporal picture of developing cHAB toxicity and biomass
as well as internal phosphorus loading in Lake Erie. Collectively, GLERL's long-term water quality monitoring
and NOAA's advanced cHAB forecasting model (HAB tracker), which integrates satellite data,
physicochemical, biological, molecular, and toxicity (this project) data to forecast bloom location, size and
toxicity with a 5-day lead time, will facilitate informed, timely decisions to reduce the impacts of toxic cHABs on
public health, natural resources, and local economies. Project outputs will also contribute to the Center
Program's goal of better understanding the influence of climate change on the frequency and severity of
cHABs in Lake Erie and other Great Lakes' regions, and thereby inform long-term planning for development of
land use as well as management and mitigation strategies.
摘要/项目摘要
在过去的几年中,蓝藻有害藻华(cHAB)变得更加频繁和严重
几十年来,由于气候变暖,预计其严重性和毒性将继续增加
人为增强的养分负荷。因此,检测和监测 cHAB 的发展和
毒性变得越来越重要,特别是对于淡水系统,例如劳伦森五大湖
为许多城市提供饮用水。传统的采样和分析方法耗时、
劳动密集型,一般仅每周或每两周实施一次,可能无法检测到
短暂但剧毒的水华事件。幸运的是,新颖的、适合用途的检测技术正在出现。
通过提供近乎实时的数据来解决以前的限制。
该项目直接解决 COHH3 RFA 中列出的四个研究重点:(1) 比较和
关联当前监测海洋和五大湖特性(包括有害藻类)的观测系统
Blooms,(2)评估新开发的原位监测传感器的长期现场应用潜力
海洋和五大湖的特性,(3) 评估物理化学的实时水下观测
特性,以及 HAB 种类和毒素的检测,为同化提供数据流
预测模型,(4) 制定适当且有效的藻类毒素监测策略(特别是在
饮用水),保护公众健康。拟议项目的具体目标是
将原位传感和采样技术与数据同化策略相结合,以改进
预测准确性,为区域利益相关者提供 CHAB 发展的预警
有毒事件,并评估气候变化对 CHAB 和内部磷负荷的影响
在伊利湖。我们将通过整合自主的原位环境样本来实现这些目标
处理器、固相吸附毒素跟踪装置、水质探头和现场便携式采样
方法,以及卫星遥感,以及改进水华预测模型的更广泛成果
并绘制出更及时、更完整的 cHAB 毒性和生物量发展的时空图
以及伊利湖的内部磷负荷。总的来说,GLERL 的长期水质监测
以及 NOAA 先进的 cHAB 预报模型(HAB 跟踪器),该模型集成了卫星数据,
物理化学、生物、分子和毒性(本项目)数据来预测水华位置、大小和
毒性的提前期为 5 天,将有助于做出明智、及时的决策,以减少有毒 cHAB 对
公共卫生、自然资源和地方经济。项目成果也将为该中心做出贡献
该计划的目标是更好地了解气候变化对气候变化频率和严重程度的影响
伊利湖和其他五大湖地区的 cHAB,从而为伊利湖和其他五大湖地区的长期发展规划提供信息
土地利用以及管理和缓解战略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Bridgeman其他文献
Thomas Bridgeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Bridgeman', 18)}}的其他基金
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
- 批准号:
10427317 - 财政年份:2018
- 资助金额:
$ 3.46万 - 项目类别:
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
- 批准号:
9789306 - 财政年份:
- 资助金额:
$ 3.46万 - 项目类别:
相似海外基金
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 3.46万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 3.46万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 3.46万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




