Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie

整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响

基本信息

  • 批准号:
    9789306
  • 负责人:
  • 金额:
    $ 3.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Abstract/Project Summary Cyanobacterial harmful algal blooms (cHABs) have become more frequent and intense over the past few decades and are projected to continue to increase in severity and toxicity due to a warming climate and anthropogenically-enhanced nutrient loading. As such, detecting and monitoring cHAB development and toxicity are of growing importance, especially for freshwater systems such as the Laurentian Great Lakes that supply drinking water to many municipalities. Traditional sampling and analysis methods are time-consuming, labor intensive, and generally implemented on only a weekly or bi-weekly basis, which may fail to detect ephemeral yet highly toxic bloom events. Fortunately, novel, fit-for-purpose detection technologies are becoming available to address previous constraints by providing near-real time data. This project directly addresses four research priorities listed in the COHH3 RFA: (1) compare and correlate current observing systems for monitoring ocean and Great Lakes properties including Harmful Algal Blooms, (2) evaluate long-term field application potential of newly developing in situ sensors for monitoring ocean and Great Lakes properties, (3) evaluate real-time, in-water observations of physicochemical properties, as well as the detection of HAB species and toxins, to provide data streams for assimilation by predictive models, (4) develop appropriate and efficient monitoring strategies for algal toxins (particularly in drinking water) that are protective of public health. The specific aims of the proposed project are to integrate in-situ sensing and sampling technologies with data assimilation strategies to improve forecast accuracy, provide regional stakeholders with advanced warning of cHAB development and toxic events, and evaluate the impacts of climate change on cHABs and internal phosphorus loading in Lake Erie. We will accomplish these aims by integrating an autonomous, in-situ Environmental Sample Processor, Solid Phase Adsorption Toxin Tracking devices, water quality probes, and field-portable sampling methods, along with satellite remote sensing with the broader outcome of improving bloom forecasting models and to develop a more timely and complete spatio-temporal picture of developing cHAB toxicity and biomass as well as internal phosphorus loading in Lake Erie. Collectively, GLERL's long-term water quality monitoring and NOAA's advanced cHAB forecasting model (HAB tracker), which integrates satellite data, physicochemical, biological, molecular, and toxicity (this project) data to forecast bloom location, size and toxicity with a 5-day lead time, will facilitate informed, timely decisions to reduce the impacts of toxic cHABs on public health, natural resources, and local economies. Project outputs will also contribute to the Center Program's goal of better understanding the influence of climate change on the frequency and severity of cHABs in Lake Erie and other Great Lakes' regions, and thereby inform long-term planning for development of land use as well as management and mitigation strategies.
摘要/项目摘要 在过去的几年里,蓝藻有害藻华(cHABs)变得更加频繁和激烈 几十年来,由于气候变暖, 增强营养负荷。因此,检测和监测cHAB的发展, 毒性越来越重要,特别是对淡水系统,如劳伦特五大湖, 为许多城市提供饮用水。传统的采样和分析方法耗时, 劳动密集型,通常仅每周或每两周执行一次,可能无法检测到 短暂但毒性很强的水华幸运的是,新的,适合目的的检测技术, 通过提供接近实时的数据,变得可用于解决先前的限制。 该项目直接涉及COHH 3 RFA中列出的四个研究重点:(1)比较和 关联当前的观测系统,以监测海洋和五大湖的特性,包括有害藻类 Blooms,(2)评估新开发的原位监测传感器的长期现场应用潜力 海洋和五大湖的性质,(3)评估实时,在水中观测的物理化学 特性,以及检测有害藻华物种和毒素,以提供数据流, 预测模型,(4)制定适当和有效的藻类毒素监测战略(特别是在 饮用水,保护公众健康。拟议项目的具体目标是 将现场传感和采样技术与数据同化战略相结合, 预测准确性,为区域利益相关者提供cHAB发展的预警, 有毒事件,并评估气候变化对cHABs和内部磷负荷的影响 在伊利湖。我们将通过整合一个自主的、原位的环境样本来实现这些目标。 处理器、固相吸附毒素跟踪设备、水质探头和现场便携式采样 方法,沿着卫星遥感,更广泛的成果是改进水华预测模型 并制定一个更及时和完整的时空发展的cHAB毒性和生物量的图片 以及伊利湖内部磷负荷。总的来说,GLERL的长期水质监测 和NOAA的先进的cHAB预测模型(HAB跟踪器),它集成了卫星数据, 物理化学,生物,分子和毒性(本项目)数据,以预测水华的位置,大小和 毒性,提前5天,将有助于知情,及时的决定,以减少有毒的cHABs的影响, 公共卫生、自然资源和地方经济。项目产出也将有助于中心 该计划的目标是更好地了解气候变化对气候变化频率和严重程度的影响 伊利湖和其他五大湖地区的cHAB,从而为长期发展规划提供信息, 土地使用以及管理和缓解战略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Bridgeman其他文献

Thomas Bridgeman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Bridgeman', 18)}}的其他基金

Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
  • 批准号:
    10427317
  • 财政年份:
    2018
  • 资助金额:
    $ 3.67万
  • 项目类别:
Integrating in-situ detection technologies and developing data assimilation strategies to improve forecast accuracy and assess climate change impacts for Microcystis blooms in Lake Erie
整合原位检测技术并制定数据同化策略,以提高预测准确性并评估气候变化对伊利湖微囊藻水华的影响
  • 批准号:
    9976544
  • 财政年份:
    2018
  • 资助金额:
    $ 3.67万
  • 项目类别:

相似海外基金

Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
  • 批准号:
    23H05448
  • 财政年份:
    2023
  • 资助金额:
    $ 3.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了