Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
基本信息
- 批准号:9977534
- 负责人:
- 金额:$ 39.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAstacoideaAxonBasic ScienceBirefringenceCommunitiesDetectionDevelopmentElectrophysiology (science)ElectroretinographyFamily suidaeFeedbackFiberGoalsImageImaging technologyImplantInterferometryInvertebratesInvestigationLabelLaboratoriesLateralLightMagnetic Resonance ImagingMagnetismMeasurementMeasuresMechanicsMethodsMicroelectrodesModelingMonitorMovementMusNerveOptical Coherence TomographyOpticsOutcomePeripheral NervesPhasePheretima sieboldiPhysiologic pulsePhysiologicalPreparationResearchResolutionRetinaScientific Advances and AccomplishmentsSideSignal InductionSignal TransductionSourceStructureStructure of phrenic nerveSystemTechniquesTechnologyTestingTimeTorsionTranslatingUltrasonographyUnmyelinated Nerve FibersVisible RadiationVisual CortexWorkbaseclinical practicecontrast enhanceddetectorexperimental studyextracellularin vivomagnetic fieldmillisecondnanometernanoscaleoptical imagingrelating to nervous systemresponseretinal nerve fiber layerspatiotemporaltemporal measurementtool
项目摘要
PROJECT SUMMARY / ABSTRACT
The development of label-free imaging technologies that directly assess neural activity remains a pressing
need. Among a variety of techniques that aim to detect transient signals associated with action potential
(AP) propagation, optical techniques have the potential for revealing and locating APs with high spatio-
temporal resolution. For instance, differential-phase interferometry and then phase-sensitive
measurements of spectral-domain optical coherence tomography (OCT) have allowed us to detect AP-
related nanometer-scale transient structural changes from unmyelinated invertebrate axons. To obtain
useful tests of nerve function, however, investigations on contrast enhancement methods for both
myelinated and unmyelinated nerve fibers are needed. The long term goal of this project is to provide non-
contact depth-resolved optical measurements of nerve function that are useful in basic scientific research.
The overall objective of this project is to use multi-contrast OCT and contrast enhancement methods for
depth-resolved label-free imaging of neural activity in myelinated and unmyelinated nerve models. The
hypothesis behind the work is that a properly directed external static magnetic field generates Lorentz force
in functioning nerve (due to ionic movements / action currents), which consequently induces a mechanical
wave accompanying AP propagation and facilitates the optical imaging of neural activity. Phase-sensitive
OCT is well poised to locate such transient signals with sub-nanometer sensitivity. We will also monitor the
intensity (reflectivity) and birefringence (retardance) signals as additional indications of neural activity. To
achieve the objective of this application, we will pursue optical imaging of neural activity based on Lorentz
effect in ex-vivo preparations (Specific Aim 1) and in-vivo visual cortex (Specific Aim 2). With successful
completion of the proposed work, we will achieve the following outcomes. The feasibility of using Lorentz
effect to aid label-free optical imaging of APs will be revealed. This will also inform people in related
imaging fields to determine whether the Lorentz effect imaging is within the capabilities of current
technology. If our work is shown to be useful, it will support functional neural investigations in laboratory
setting. The results may also suggest more challenging in-vivo applications that require incorporation of
active tracking systems for the needed stability.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANER AKKIN其他文献
TANER AKKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANER AKKIN', 18)}}的其他基金
BRAIN CONNECTS: Center for Mesoscale Connectomics
大脑连接:中尺度连接组学中心
- 批准号:
10664257 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
- 批准号:
10443418 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
- 批准号:
10586107 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
- 批准号:
8204779 - 财政年份:2010
- 资助金额:
$ 39.92万 - 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
- 批准号:
8022131 - 财政年份:2010
- 资助金额:
$ 39.92万 - 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
- 批准号:
8401905 - 财政年份:2010
- 资助金额:
$ 39.92万 - 项目类别:














{{item.name}}会员




