Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
基本信息
- 批准号:10586107
- 负责人:
- 金额:$ 49.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-07 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyAnimal ModelArchitectureAtlasesAxonBirefringenceBrainBrain DiseasesBrain MappingBrain imagingCellsDeep Brain StimulationDevelopmentDiffusion Magnetic Resonance ImagingDiseaseDissectionElectroencephalographyElectron MicroscopyFaceFascicleFiberFoundationsFunctional Magnetic Resonance ImagingFutureGenerationsGoalsHistologicHumanImageImaging technologyInjectionsInternal CapsuleLabelLasersLateralLocationMacaca mulattaMapsMental disordersMethodsMicroscopicMotorMotor CortexNeuronsOptical Coherence TomographyOpticsPathway interactionsPatternPerformancePhasePopulationRattusResolutionSamplingStructureStructure of subthalamic nucleusSynapsesSystemTechniquesTechnologyThalamic structureTissuesTracerVisible RadiationVisualizationWorkanalytical toolattenuationbrain circuitrybrain tissuecingulate cortexconnectomedensityfallsgray matterhuman imagingimage processingimaging modalityimprovedin vivometermultiparametric imagingnanoscalenervous system disorderneural tractneuroimagingneurosurgerynonhuman primatenoveloptical imagingpolarized lightquantitative imagingreconstructiontargeted treatmenttractographywhite matter
项目摘要
PROJECT SUMMARY AND ABSTRACT
Many neurological and psychiatric disorders are essentially connectionist disorders: certain sets of neurons
have abnormally increased or decreased connectivity with other sets of neurons. Deep brain stimulation
(DBS) therapies target small, unique populations of axons and/or cell bodies in order to treat brain disorders
and normalize connectivity. Thus, mapping the wiring diagram of the brain is an important goal. Macroscale
connectivity has been studied indirectly in humans using noninvasive neuroimaging. In order to develop a
much higher resolution connectivity map of the brain, this project will develop depth-resolved polarized light
imaging to visualize axons and fiber tracts. Since brain imaging and mapping at microscopic resolution is
feasible with intrinsic optical contrasts (e.g. polarization-based) and depth-resolved block-face imaging is
desired before histological processing, we have developed the serial optical coherence scanner (SOCS) for
large-scale or whole brain imaging with microscopic resolution. SOCS combines a polarization-maintaining
fiber based polarization-sensitive optical coherence tomography and a tissue slicer. This project will create a
novel SOCS system that can image axonal tracts at the micron scale spatial resolution using unbiased optical
contrasts (Aim 1). The approach will be evaluated, refined, and compared in the same brain tissue to neural
tract-tracer labeling of tracts associated with DBS targets for brain disorders, in nonhuman animal models
(Aim 2). The approach will then be applied to DBS targets in the human brain (Aim 3). The physical scales at
which this project investigates the brain microstructure are unique (1-10 μm resolution across centimeters of
tissue). This project will pave the way for the foundation of a future human connectome at the micron scale,
which is the highest resolution achievable with current optical technology for imaging an entire human brain.
项目总结与摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANER AKKIN其他文献
TANER AKKIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANER AKKIN', 18)}}的其他基金
BRAIN CONNECTS: Center for Mesoscale Connectomics
大脑连接:中尺度连接组学中心
- 批准号:
10664257 - 财政年份:2023
- 资助金额:
$ 49.71万 - 项目类别:
Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
- 批准号:
10443418 - 财政年份:2022
- 资助金额:
$ 49.71万 - 项目类别:
Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
- 批准号:
9977534 - 财政年份:2020
- 资助金额:
$ 49.71万 - 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
- 批准号:
8204779 - 财政年份:2010
- 资助金额:
$ 49.71万 - 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
- 批准号:
8022131 - 财政年份:2010
- 资助金额:
$ 49.71万 - 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
- 批准号:
8401905 - 财政年份:2010
- 资助金额:
$ 49.71万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 49.71万 - 项目类别:
Continuing Grant














{{item.name}}会员




