Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets

用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标

基本信息

  • 批准号:
    10586107
  • 负责人:
  • 金额:
    $ 49.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-07 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY AND ABSTRACT Many neurological and psychiatric disorders are essentially connectionist disorders: certain sets of neurons have abnormally increased or decreased connectivity with other sets of neurons. Deep brain stimulation (DBS) therapies target small, unique populations of axons and/or cell bodies in order to treat brain disorders and normalize connectivity. Thus, mapping the wiring diagram of the brain is an important goal. Macroscale connectivity has been studied indirectly in humans using noninvasive neuroimaging. In order to develop a much higher resolution connectivity map of the brain, this project will develop depth-resolved polarized light imaging to visualize axons and fiber tracts. Since brain imaging and mapping at microscopic resolution is feasible with intrinsic optical contrasts (e.g. polarization-based) and depth-resolved block-face imaging is desired before histological processing, we have developed the serial optical coherence scanner (SOCS) for large-scale or whole brain imaging with microscopic resolution. SOCS combines a polarization-maintaining fiber based polarization-sensitive optical coherence tomography and a tissue slicer. This project will create a novel SOCS system that can image axonal tracts at the micron scale spatial resolution using unbiased optical contrasts (Aim 1). The approach will be evaluated, refined, and compared in the same brain tissue to neural tract-tracer labeling of tracts associated with DBS targets for brain disorders, in nonhuman animal models (Aim 2). The approach will then be applied to DBS targets in the human brain (Aim 3). The physical scales at which this project investigates the brain microstructure are unique (1-10 μm resolution across centimeters of tissue). This project will pave the way for the foundation of a future human connectome at the micron scale, which is the highest resolution achievable with current optical technology for imaging an entire human brain.
项目总结和摘要 许多神经和精神疾病本质上都是联结障碍: 与其他神经元的连接异常增加或减少。脑深部电刺激 (DBS)治疗针对小的、独特的轴突和/或细胞体群体 并使连通性正常化。因此,绘制大脑的线路图是一个重要的目标。宏观尺度 已经使用非侵入性神经成像在人类中间接地研究了连通性。为了开发 更高分辨率的大脑连接图,该项目将开发深度分辨偏振光 成像以可视化轴突和纤维束。由于大脑成像和映射在微观分辨率是 利用固有光学对比度(例如,基于偏振)和深度分辨块面成像是可行的, 在组织学处理之前,我们开发了串行光学相干扫描仪(SOCS), 显微镜分辨率的大规模或全脑成像。SOCS结合了极化维持 基于光纤的偏振敏感光学相干断层扫描和组织切片机。该项目将创建一个 新型SOCS系统可以使用无偏光学以微米级空间分辨率对轴突束进行成像 对比度(目标1)。该方法将在相同的脑组织中进行评估,改进和比较,以神经 在非人类动物模型中,与脑疾病DBS靶点相关的神经束示踪剂标记 (Aim 2)。然后将该方法应用于人脑中的DBS目标(目标3)。物理尺度在 该项目研究的大脑微观结构是独特的(1-10 μm的分辨率跨越厘米 组织)。该项目将为未来人类连接体在微米尺度上的基础铺平道路, 这是目前用于对整个人脑成像的光学技术所能达到的最高分辨率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANER AKKIN其他文献

TANER AKKIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANER AKKIN', 18)}}的其他基金

BRAIN CONNECTS: Center for Mesoscale Connectomics
大脑连接:中尺度连接组学中心
  • 批准号:
    10664257
  • 财政年份:
    2023
  • 资助金额:
    $ 49.71万
  • 项目类别:
Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
  • 批准号:
    10443418
  • 财政年份:
    2022
  • 资助金额:
    $ 49.71万
  • 项目类别:
Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
  • 批准号:
    9977534
  • 财政年份:
    2020
  • 资助金额:
    $ 49.71万
  • 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
  • 批准号:
    8204779
  • 财政年份:
    2010
  • 资助金额:
    $ 49.71万
  • 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
  • 批准号:
    8022131
  • 财政年份:
    2010
  • 资助金额:
    $ 49.71万
  • 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
  • 批准号:
    8401905
  • 财政年份:
    2010
  • 资助金额:
    $ 49.71万
  • 项目类别:
Optical Detection of Neural Activity
神经活动的光学检测
  • 批准号:
    7139440
  • 财政年份:
    2006
  • 资助金额:
    $ 49.71万
  • 项目类别:
Optical Detection of Neural Activity
神经活动的光学检测
  • 批准号:
    7286815
  • 财政年份:
    2006
  • 资助金额:
    $ 49.71万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.71万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了