2020 Meiosis Gordon Research Conference and Gordon Research Seminar
2020年减数分裂戈登研究大会暨戈登研究研讨会
基本信息
- 批准号:9980585
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAddressAneuploidyAnimal ModelArchitectureBiologicalBiological ModelsCell CycleCell Cycle CheckpointCell Cycle RegulationCell divisionCellsCellular biologyChromatinChromosome PairingChromosome SegregationChromosomesCollaborationsCommunitiesCongenital AbnormalityDNA RepairDataDefectDisciplineDown SyndromeEdward&aposs syndromeEnsureEnvironmentEpigenetic ProcessEukaryotaEuropeanEventFosteringFunctional disorderGene ExpressionGene Expression RegulationGenetic RecombinationGenomic InstabilityGerm CellsGoalsGrowthHaploidyHourHumanInfertilityInsectaInstitutionInternationalInvestigationKnowledgeLeadLearningLightLondonMeiosisMeiotic RecombinationMentorsMentorshipMicroscopyMolecularNamesNatureNematodaNorth AmericaOncogenesOralParticipantPlantsPostdoctoral FellowProcessProductionRegulationReproductionReproductive HealthResearchResearch PersonnelResolutionRunningScienceScientistSlideSpontaneous abortionTimeUnderrepresented MinorityVariantVertebratesWomanWorkbiophysical analysiscareercatalystchromosome movementcollegecomparativeeggexperiencefaculty mentorfascinatefungusgenome editinggraduate studentimprovedinnovationmeetingsnovelpeerposterspreventprogramssperm cellstillbirthsuccesssymposiumtheoriesundergraduate student
项目摘要
Meiosis is the specialized cell division cycle that gives rise to haploid gametes for sexual reproduction. Given
the conserved nature of many of the distinct events in meiosis, there is a surprising degree of variation in
meiotic regulation across sexually reproducing species. Exploring both these distinct differences and
commonalities is crucial to our understanding of how meiosis is regulated to ensure the production of euploid
gametes. Nowhere is this more important than in our own species, in which defects in meiosis are responsible
for the extremely high rates of infertility, miscarriage, and birth defects, such as Trisomies 18 and 21 (Down
syndrome). Furthermore, the meiotic program encompasses unique molecular processes underlying cell cycle
control and checkpoint activation, DNA repair and recombination, chromatin architecture, chromosome
movements, and gene expression. This immense complexity can inform a wide variety of biological sub-
disciplines, including germ cell biology, DNA repair and cancer, gene regulation and epigenetics, and
chromosome dynamics and spindle assembly, to name a few. Partial support is requested for the premier
international meeting on Meiosis as part of the Gordon Research Conferences (GRC), and the accompanying
trainee-led Meiosis Gordon Research Seminar (GRS), taking place at Colby-Sawyer College in New London,
NH on June 7-12 and June 6-7, 2020, respectively. The goals are: (1) To harness the strength of various
model systems and state-of-the-art technical approaches to shed light on the molecular mechanisms
underpinning meiosis; (2) To identify novel scientific themes and collaborations that can accelerate the pace of
discovery in our field; and (3) To promote an environment of inclusivity and to identify key ingredients for
success of our trainees, our diversity representation, and women. The GRC will gather 180 participants to
present and discuss cutting-edge, mostly unpublished research addressing critical topics in meiosis. The
program comprises 9 plenary sessions that broadly address current issues in the initiation and progression of
meiotic recombination, meiotic progression and cell cycle checkpoints, regulation of meiotic gene expression,
chromosome pairing and synapsis, chromosome dynamics, and chromosome segregation. Four poster
sessions will allow trainees to present their data and to engage in critical discussions about their work with
leaders in the field. An open forum Power Hour will be convened with the aims of addressing the challenges
faced by women in science, and supporting the professional growth of women in our community. The GRS
consists of three plenary and two poster sessions, and will include 60 participants, including several invited
faculty mentors. The GRS provides opportunities for trainees to present their work, to network, and to discuss
the topics that will be covered in more depth during the GRC. Our community enjoys and promotes strong
representation by women, but we will further enhance our diversity by offering attendance support to under-
represented minorities, young investigators, and researchers from predominantly undergraduate institutions.
减数分裂是一种特殊的细胞分裂周期,产生单倍体配子进行有性生殖。鉴于
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paula Elaine Cohen其他文献
Paula Elaine Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paula Elaine Cohen', 18)}}的其他基金
Investigating the role of bromodomain-containing proteins in the production of viable spermatozoa and male fertility
研究含溴结构域蛋白在活精子产生和男性生育能力中的作用
- 批准号:
10157200 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
Investigating the role of bromodomain-containing proteins in the production of viable spermatozoa and male fertility
研究含溴结构域蛋白在活精子产生和男性生育能力中的作用
- 批准号:
10398876 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
Investigating the role of bromodomain-containing proteins in the production of viable spermatozoa and male fertility
研究含溴结构域蛋白在活精子产生和男性生育能力中的作用
- 批准号:
10615696 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
SLX4 as a mediator of crossover pathway decisions in mammalian meiosis
SLX4 作为哺乳动物减数分裂中交叉途径决策的中介者
- 批准号:
10540369 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Research Grant














{{item.name}}会员




