Biological and Physical Mechanisms of ultrasound/microbubble-mediated therapeutic gene delivery across the endothelial barrier
超声/微泡介导的治疗基因跨内皮屏障传递的生物和物理机制
基本信息
- 批准号:9980415
- 负责人:
- 金额:$ 63.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAntibodiesBehaviorBiochemicalBiologicalBiological AvailabilityBiological ModelsBiologyBiophysical ProcessBiophysicsBlood VesselsBlood capillariesCardiovascular DiseasesCell membraneCellsChargeClinicalConfocal MicroscopyCustomDiseaseEndocytosisEndothelial CellsEndotheliumEventExtravasationFormulationGene DeliveryGene ExpressionGenesGuide RNAHeart HypertrophyHuman GenomeIn VitroIndividualIntelligenceIntravenousKnowledgeLipid BilayersLocal TherapyMalignant NeoplasmsMeasuresMechanicsMediatingMethodsMicroRNAsMicrobubblesMicrocirculationModalityNucleic AcidsOpticsPathologicPathway interactionsPermeabilityPharmaceutical PreparationsPhysicsPhysiologicalPhysiologyPre-Clinical ModelProcessPropertyProteinsRNARNA InterferenceRNA TransportRNA deliveryResearchRiskSafetySignal PathwaySignal TransductionSiteSkeletal MuscleSmall Interfering RNASpeedTechnologyTestingTherapeuticTherapeutic UsesTimeTissuesTranslatingTranslationsUltrasonic TransducerUltrasonographyUntranslated RNAUp-Regulationbaseclinical applicationcohesioncoronary fibrosishealingimage guidedimage guided therapyin vivoin vivo evaluationinsightmultidisciplinarynucleic acid deliverypre-clinicalreal-time imagesresponsesmall molecule inhibitortargeted deliverytherapeutic RNAtherapeutic genetraffickingtumor growthuptakevibration
项目摘要
RNA-based therapeutics offer a powerful paradigm for treating disease by targeting heretofore “undruggable”
genes, allowing highly specific silencing of pathologic gene expression to heal heretofore hopeless illnesses.
However, a safe and efficient method for targeted delivery of cell-impermeant RNA drugs has remained elusive.
A major hurdle for RNA-based therapies using vascular delivery is to circumvent the endothelial barrier. We have
been developing a unique technology using intravenously injected RNA-loaded microbubbles (MB) which are
triggered to cavitate by ultrasound (US), causing transient permeabilization of the adjacent cell membrane and
endocytosis-independent uptake of the RNA by extravascular target cells. The potential of this site-specific, non-
invasive delivery method is extra-ordinary, more so because the MBs and US transducer also confer capability
for simultaneous real-time image-guided therapy. Despite its pre-clinical proof of concept, fundamental
mechanisms underlying the delivery efficacy of ultrasound-targeted MB cavitation (UTMC) are poorly
understood. Without this knowledge, the potential for UTMC to overcome many of the cellular barriers to bedside
RNA therapeutics will not be realized. Accordingly, this proposal utilizes 2 distinct MB formulations and RNA
payloads to systematically, for the first time, perform studies spanning individual cell signaling pathways, in vivo
MB acoustic behaviors, and three-dimensional tissue interrogation of UTMC effects in vivo, to develop a cohesive
paradigm addressing the mechanisms of UTMC-mediated endothelial hyperpermeability leading to RNA
delivery. We hypothesize that MBs cavitating in the microcirculation mechanically perturb endothelial cells,
leading to signaling events that culminate in endothelial barrier hyperpermeability and enhanced payload uptake.
Using model systems, we propose in vitro studies to interrogate mechanistic pathways, then in vivo studies
investigating UTMC endothelial barrier effects in real time, with 3 Aims: (1) Determine mechanisms by which
UTMC increases endothelial barrier permeability. We will use endothelialized transwells and manipulate
candidate pathways to test the hypothesis that UTMC-induced Ca2+ influx increases endothelial permeability,
and optically measure attendant cellular events (multicolor confocal microscopy), correlating barrier function to
cell response. (2) Determine the relationship between in vivo MB behaviors and transendothelial transport
of siRNA using a custom ultrafast camera to visualize microvascular MB vibrations in vivo, testing the hypothesis
that UTMC causes quantifiable mechanical events, then deriving physical principles governing UTMC-mediated
hyperpermeability (3) Determine extravasation pathways and cellular fate of RNA-loaded MBs during
UTMC in vivo using intravital high-speed multicolor confocal microscopy in cremaster microcirculation. Our
multidisciplinary team unites physics/acoustics with biology/physiology to derive insights into biophysical
mechanisms of UTMC-facilitated RNA delivery. Ultimately, our research will define a rational basis to optimize
this remarkable technology, and hence accelerate the translation of RNA-based therapeutics to the bedside.
基于RNA的治疗方法通过靶向迄今为止“不可治疗”的疾病提供了一个强大的范例
基因,允许病理基因表达的高度特异性沉默,以治愈迄今为止无望的疾病。
然而,一种安全有效的靶向递送不渗透细胞的RNA药物的方法仍然难以捉摸。
使用血管递送的基于RNA的疗法的主要障碍是绕过内皮屏障。我们有
一直在开发一种独特的技术,使用静脉注射的RNA加载微泡(MB),
通过超声(US)触发空化,引起相邻细胞膜的瞬时透化,
血管外靶细胞对RNA的内吞非依赖性摄取。这种特定地点的潜力,非-
侵入性输送方法是特别的,更是因为MB和US换能器也赋予了能力
用于同时进行实时图像引导治疗。尽管其概念的临床前证明,
超声靶向MB空化(UTMC)的递送功效的潜在机制很差,
明白如果没有这些知识,UTMC克服许多细胞障碍的潜力,
RNA疗法将无法实现。因此,该提案使用2种不同的MB制剂和RNA
有效载荷,首次在体内系统地进行跨越单个细胞信号通路的研究,
MB的声学行为,以及体内UTMC效应的三维组织询问,以开发内聚
阐述UTMC介导的内皮细胞通透性过高导致RNA
交付.我们假设微循环中的微泡空化机械地扰乱了内皮细胞,
导致导致内皮屏障高渗透性和增强的有效负荷摄取的信号事件。
使用模型系统,我们建议在体外研究询问机制途径,然后在体内研究
真实的研究UTMC内皮屏障作用,有3个目的:(1)确定
UTMC增加内皮屏障通透性。我们将使用内皮化的transwells,
用于检验UTMC诱导的Ca 2+内流增加内皮渗透性的假设的候选途径,
并光学测量伴随的细胞事件(荧光共聚焦显微镜),将屏障功能与
细胞反应。(2)确定体内MB行为与跨内皮转运之间的关系
使用定制的超快相机观察体内微血管MB振动,测试假设
UTMC导致可量化的机械事件,然后推导出管理UTMC介导的
(3)确定在高渗透性过程中RNA负载的MB的外渗途径和细胞命运。
在提睾肌微循环中使用活体高速共聚焦显微镜进行体内UTMC。我们
多学科团队将物理学/声学与生物学/生理学结合起来,以深入了解生物物理学
UTMC促进的RNA递送的机制。最终,我们的研究将确定一个合理的基础,
这项卓越的技术,从而加速了基于RNA的治疗方法在临床上的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Flordeliza S Villanueva其他文献
1118-79 Drag reduction by polymer infusion: A new mechanism to enhance microcirculatory perfusion for the treatment of ischemia
- DOI:
10.1016/s0735-1097(04)91227-2 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
John J Pacella;Erxiong Lu;Joan Gretton;David Fischer;Marina V Kameneva;Flordeliza S Villanueva - 通讯作者:
Flordeliza S Villanueva
Flordeliza S Villanueva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Flordeliza S Villanueva', 18)}}的其他基金
Biological and Physical Mechanisms of ultrasound/microbubble-mediated therapeutic gene delivery across the endothelial barrier
超声/微泡介导的治疗基因跨内皮屏障传递的生物和物理机制
- 批准号:
10220968 - 财政年份:2018
- 资助金额:
$ 63.74万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10382469 - 财政年份:2016
- 资助金额:
$ 63.74万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10269077 - 财政年份:2016
- 资助金额:
$ 63.74万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
10633063 - 财政年份:2016
- 资助金额:
$ 63.74万 - 项目类别:
Training Program in Imaging Sciences in Translational Cardiovascular Research
转化心血管研究成像科学培训项目
- 批准号:
9264011 - 财政年份:2016
- 资助金额:
$ 63.74万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8664844 - 财政年份:2012
- 资助金额:
$ 63.74万 - 项目类别:
Targeted theranostic microbubble vectors for transcription factor decoy delivery
用于转录因子诱饵递送的靶向治疗诊断微泡载体
- 批准号:
8528523 - 财政年份:2012
- 资助金额:
$ 63.74万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8501449 - 财政年份:2012
- 资助金额:
$ 63.74万 - 项目类别:
Ultrasound-activated microbubbles for targeted siRNA delivery to tumor
用于将 siRNA 靶向递送到肿瘤的超声激活微泡
- 批准号:
8857130 - 财政年份:2012
- 资助金额:
$ 63.74万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 63.74万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 63.74万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 63.74万 - 项目类别:
Standard Grant